Suppr超能文献

BET 溴结构域抑制治疗活性的作用机制。

The mechanisms behind the therapeutic activity of BET bromodomain inhibition.

机构信息

Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA.

Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.

出版信息

Mol Cell. 2014 Jun 5;54(5):728-36. doi: 10.1016/j.molcel.2014.05.016.

Abstract

The bromodomain and extraterminal (BET) protein Brd4 recruits transcriptional regulatory complexes to acetylated chromatin. While Brd4 is considered to be a general transcriptional regulator, pharmacological inhibition of BET proteins shows therapeutic activity in a variety of different pathologies, particularly in models of cancer and inflammation. Such effects have been attributed to a specific set of downstream target genes whose expression is disproportionately sensitive to pharmacological targeting of BET proteins. Emerging evidence links the transcriptional consequences of BET inhibition to the association of Brd4 with enhancer elements, which tend to be involved in lineage-specific gene regulation. Furthermore, Brd4 engages in direct regulatory interactions with several DNA-binding transcription factors to influence their disease-relevant functions. Here we review the current understanding of molecular mechanisms that underlie the promising therapeutic effects of BET bromodomain inhibition.

摘要

溴结构域和末端(BET)蛋白 Brd4 将转录调控复合物募集到乙酰化染色质上。虽然 Brd4 被认为是一种通用转录调节剂,但 BET 蛋白的药理学抑制在多种不同的病理中显示出治疗活性,特别是在癌症和炎症模型中。这些影响归因于一组特定的下游靶基因,其表达对 BET 蛋白的药理学靶向具有不成比例的敏感性。新出现的证据将 BET 抑制的转录后果与 Brd4 与增强子元件的关联联系起来,这些元件往往参与谱系特异性基因调控。此外,Brd4 与几个 DNA 结合转录因子直接进行调节相互作用,以影响它们与疾病相关的功能。在这里,我们回顾了目前对 BET 溴结构域抑制有希望的治疗效果的基础分子机制的理解。

相似文献

1
The mechanisms behind the therapeutic activity of BET bromodomain inhibition.
Mol Cell. 2014 Jun 5;54(5):728-36. doi: 10.1016/j.molcel.2014.05.016.
2
Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains.
Mol Cell. 2019 Feb 7;73(3):621-638.e17. doi: 10.1016/j.molcel.2018.11.006. Epub 2018 Dec 13.
3
Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery.
Oncotarget. 2015 Mar 20;6(8):5501-16. doi: 10.18632/oncotarget.3551.
4
Small-Molecule Targeting of BET Proteins in Cancer.
Adv Cancer Res. 2016;131:21-58. doi: 10.1016/bs.acr.2016.04.001. Epub 2016 May 31.
5
AZD5153: A Novel Bivalent BET Bromodomain Inhibitor Highly Active against Hematologic Malignancies.
Mol Cancer Ther. 2016 Nov;15(11):2563-2574. doi: 10.1158/1535-7163.MCT-16-0141. Epub 2016 Aug 29.
6
BET bromodomain proteins are required for glioblastoma cell proliferation.
Epigenetics. 2014 Apr;9(4):611-20. doi: 10.4161/epi.27906. Epub 2014 Feb 19.
7
Structure-Based Design of γ-Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors.
J Med Chem. 2015 Jun 25;58(12):4927-39. doi: 10.1021/acs.jmedchem.5b00613. Epub 2015 Jun 16.
8
Targetable BET proteins- and E2F1-dependent transcriptional program maintains the malignancy of glioblastoma.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5086-E5095. doi: 10.1073/pnas.1712363115. Epub 2018 May 15.
9
Targeting Hippo coactivator YAP1 through BET bromodomain inhibition in esophageal adenocarcinoma.
Mol Oncol. 2020 Jun;14(6):1410-1426. doi: 10.1002/1878-0261.12667. Epub 2020 Apr 7.
10
Bromodomain and extraterminal protein inhibitors in pediatrics: A review of the literature.
Pediatr Blood Cancer. 2017 May;64(5). doi: 10.1002/pbc.26334. Epub 2016 Nov 30.

引用本文的文献

1
Development of Degraders and 2-pyridinecarboxyaldehyde (2-PCA) as a recruitment Ligand for FBXO22.
bioRxiv. 2025 Aug 20:2025.08.19.671158. doi: 10.1101/2025.08.19.671158.
3
PROTAC technology for prostate cancer treatment.
Acta Mater Med. 2025 Jan 7;4(1):99-121. doi: 10.15212/amm-2024-0075. Epub 2025 Jan 30.
4
Established and Emerging Roles of Epigenetic Regulation in Diabetic Cardiomyopathy.
Diabetes Metab Res Rev. 2025 Sep;41(6):e70081. doi: 10.1002/dmrr.70081.
5
Liver-targeted degradation of BRD4 reverses hepatic fibrosis and enhances metabolism in murine models.
Theranostics. 2025 Jun 18;15(15):7270-7290. doi: 10.7150/thno.113852. eCollection 2025.
6
Machine learning-assisted exploration of multidrug-drug administration regimens for organoid arrays.
Sci Adv. 2025 Aug;11(31):eadt1851. doi: 10.1126/sciadv.adt1851. Epub 2025 Jul 30.
8
BRD4 regulates mA of ESPL1 mRNA interaction with ALKBH5 to modulate breast cancer progression.
Acta Pharm Sin B. 2025 Mar;15(3):1552-1570. doi: 10.1016/j.apsb.2024.12.037. Epub 2025 Jan 3.
10
Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains.
ACS Pharmacol Transl Sci. 2025 Mar 14;8(4):978-1012. doi: 10.1021/acsptsci.4c00726. eCollection 2025 Apr 11.

本文引用的文献

1
A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia.
Cell. 2014 Apr 10;157(2):369-381. doi: 10.1016/j.cell.2014.02.019. Epub 2014 Apr 3.
3
Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release.
Cell. 2013 Dec 19;155(7):1581-1595. doi: 10.1016/j.cell.2013.10.056.
5
Genome-wide localization of small molecules.
Nat Biotechnol. 2014 Jan;32(1):92-6. doi: 10.1038/nbt.2776. Epub 2013 Dec 15.
7
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.
Genes Dev. 2013 Dec 15;27(24):2648-62. doi: 10.1101/gad.232710.113. Epub 2013 Nov 27.
8
RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19754-9. doi: 10.1073/pnas.1310658110. Epub 2013 Nov 18.
10
Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants.
Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17921-6. doi: 10.1073/pnas.1317023110. Epub 2013 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验