Rosenfeld E V
Institute of Metal Physics, Yekaterinburg, 620041, Russia,
Eur Biophys J. 2014 Sep;43(8-9):367-76. doi: 10.1007/s00249-014-0968-7. Epub 2014 Jun 7.
The duration of phase 2 of a transient after sudden reduction of the length of a muscle or a load on it decreases rapidly with increasing amplitude of the jump. This is mainly due to the increasing role of the superfast relaxation processes with a characteristic time of about 0.1 ms. Mainly in order to explain this effect, Huxley and Simmons proposed their famous model of force generation in 1971. The present paper examines the effect of elasticity of filaments on relaxation processes. It is shown that if the filaments are not perfectly elastic, the superfast tension transient may result from a delay of redistribution of stresses within actin and/or myosin filaments at the beginning of phase 2. Corresponding redistribution of deformations within the actin filaments leads to non-uniform shifts of the attached myosin heads and changes in the X-ray diffraction pattern. Additionally, we discuss a change in the experimental technique that allows suppression of the elastic vibrations that obscure the contributions of other sources to the superfast tension transient.
当肌肉长度或其所承受负荷突然缩短后,瞬态过程第二阶段的持续时间会随着跳跃幅度的增加而迅速缩短。这主要是由于超快弛豫过程的作用不断增强,其特征时间约为0.1毫秒。主要为了解释这一效应,赫胥黎和西蒙斯在1971年提出了他们著名的力产生模型。本文研究了细丝弹性对弛豫过程的影响。结果表明,如果细丝不是完全弹性的,超快张力瞬态可能是由于在第二阶段开始时肌动蛋白和/或肌球蛋白细丝内应力重新分布的延迟所致。肌动蛋白细丝内相应的变形重新分布会导致附着的肌球蛋白头部不均匀移动,并改变X射线衍射图谱。此外,我们还讨论了一种实验技术的变化,该变化能够抑制弹性振动,而弹性振动会掩盖其他来源对超快张力瞬态的贡献。