Suppr超能文献

MAGI:一种用于在GPU架构中进行快速微小RNA测序分析的Node.js网络服务。

MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure.

作者信息

Kim Jihoon, Levy Eric, Ferbrache Alex, Stepanowsky Petra, Farcas Claudiu, Wang Shuang, Brunner Stefan, Bath Tyler, Wu Yuan, Ohno-Machado Lucila

机构信息

Division of Biomedical Informatics, University of California at San Diego, Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA, Biomedical Informatics Program, School of Informatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria and Department of Biostatistics and Biomedical Informatics, Duke University, Durham, NC 27710, USA.

Division of Biomedical Informatics, University of California at San Diego, Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA, Biomedical Informatics Program, School of Informatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria and Department of Biostatistics and Biomedical Informatics, Duke University, Durham, NC 27710, USA Division of Biomedical Informatics, University of California at San Diego, Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA, Biomedical Informatics Program, School of Informatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria and Department of Biostatistics and Biomedical Informatics, Duke University, Durham, NC 27710, USA.

出版信息

Bioinformatics. 2014 Oct;30(19):2826-7. doi: 10.1093/bioinformatics/btu377. Epub 2014 Jun 6.

Abstract

SUMMARY

MAGI is a web service for fast MicroRNA-Seq data analysis in a graphics processing unit (GPU) infrastructure. Using just a browser, users have access to results as web reports in just a few hours->600% end-to-end performance improvement over state of the art. MAGI's salient features are (i) transfer of large input files in native FASTA with Qualities (FASTQ) format through drag-and-drop operations, (ii) rapid prediction of microRNA target genes leveraging parallel computing with GPU devices, (iii) all-in-one analytics with novel feature extraction, statistical test for differential expression and diagnostic plot generation for quality control and (iv) interactive visualization and exploration of results in web reports that are readily available for publication.

AVAILABILITY AND IMPLEMENTATION

MAGI relies on the Node.js JavaScript framework, along with NVIDIA CUDA C, PHP: Hypertext Preprocessor (PHP), Perl and R. It is freely available at http://magi.ucsd.edu.

摘要

摘要

MAGI是一种用于在图形处理单元(GPU)基础设施中快速进行MicroRNA-Seq数据分析的网络服务。用户只需通过浏览器,就能在短短几小时内获得作为网络报告的结果,与现有技术相比,端到端性能提升了600%。MAGI的显著特点包括:(i)通过拖放操作以原生带质量信息的FASTA(FASTQ)格式传输大型输入文件;(ii)利用GPU设备的并行计算快速预测microRNA靶基因;(iii)集新颖特征提取、差异表达统计检验以及用于质量控制的诊断图生成于一体的分析功能;(iv)在可供发表的网络报告中对结果进行交互式可视化和探索。

可用性与实现方式

MAGI依赖于Node.js JavaScript框架,以及NVIDIA CUDA C、PHP(超文本预处理器)、Perl和R。它可在http://magi.ucsd.edu免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d64/4173015/8993dc131782/btu377f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验