Ulm Lea, Krivohlavek Adela, Jurašin Darija, Ljubojević Marija, Šinko Goran, Crnković Tea, Žuntar Irena, Šikić Sandra, Vinković Vrček Ivana
Andrija Štampar Teaching Institute of Public Health, Mirogojska 16, 10 000, Zagreb, Croatia.
Ruđer Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia.
Environ Sci Pollut Res Int. 2015 Dec;22(24):19990-9. doi: 10.1007/s11356-015-5201-4. Epub 2015 Aug 23.
The proliferation of silver nanoparticle (AgNP) production and use owing to their antimicrobial properties justifies the need to examine the resulting environmental impacts. The discharge of biocidal nanoparticles to water bodies may pose a threat to aquatic species. This study evaluated the effects of citrate-coated AgNPs on the standardized test organism Daphnia magna Straus clone MBP996 by means of biochemical biomarker response. AgNP toxicity was compared against the toxic effect of Ag(+). The toxicity endpoints were calculated based upon measured Ag concentrations in exposure media. For AgNPs, the NOAEC and LOAEC values at 48 h were 5 and 7 μg Ag/L, respectively, while these values were 0.5 and 1 μg Ag/L, respectively, for Ag(+). The EC50 at 48 h was computed to be 12.4 ± 0.6 and 2.6 ± 0.1 μg Ag/L for AgNPs and Ag(+), respectively, with 95 % confidence intervals of 12.1-12.8 and 2.3-2.8 μg Ag/L, respectively. These results indicate significant less toxicity of AgNP compared to free Ag(+) ions. Five biomarkers were evaluated in Daphnia magna neonates after acute exposure to Ag(+) or AgNPs, including glutathione (GSH) level, reactive oxygen species (ROS) content, and catalase (CAT), acetylcholinesterase (AChE), and superoxide dismutase (SOD) activity. AgNPs induced toxicity and oxidative stress responses in D. magna neonates at tenfold higher concentrations than Ag. Biochemical methods revealed a clear increase in AChE activity, decreased ROS level, increased GSH level and CAT activity, but no significant changes in SOD activity. As Ag(+) may dissolve from AgNPs, these two types of Ag could act synergistically and produce a greater toxic response. The observed remarkably high toxicity of AgNPs (in the parts-per-billion range) to crustaceans indicates that these organisms are a vulnerable link in the aquatic food chain with regard to contamination by nanosilver. Graphical Abstract ᅟ.
由于银纳米颗粒(AgNP)具有抗菌特性,其生产和使用不断增加,这使得有必要研究由此产生的环境影响。具有杀菌作用的纳米颗粒排放到水体中可能会对水生物种构成威胁。本研究通过生化生物标志物反应,评估了柠檬酸盐包覆的AgNP对标准化测试生物大型溞(Daphnia magna Straus克隆MBP996)的影响。将AgNP的毒性与Ag(+)的毒性作用进行了比较。毒性终点是根据暴露介质中测得的银浓度计算得出的。对于AgNP,48小时时的无观察到有害作用浓度(NOAEC)和最低观察到有害作用浓度(LOAEC)分别为5和7μg银/升,而对于Ag(+),这些值分别为0.5和1μg银/升。48小时时,AgNP和Ag(+)的半数效应浓度(EC50)经计算分别为12.4±0.6和2.6±0.1μg银/升,95%置信区间分别为12.1 - 12.8和2.3 - 2.8μg银/升。这些结果表明,与游离的Ag(+)离子相比,AgNP的毒性显著更低。在大型溞幼体急性暴露于Ag(+)或AgNP后,评估了五种生物标志物,包括谷胱甘肽(GSH)水平、活性氧(ROS)含量以及过氧化氢酶(CAT)、乙酰胆碱酯酶(AChE)和超氧化物歧化酶(SOD)活性。AgNP在比Ag浓度高十倍的情况下诱导了大型溞幼体的毒性和氧化应激反应。生化方法显示AChE活性明显增加、ROS水平降低、GSH水平和CAT活性增加,但SOD活性无显著变化。由于Ag(+)可能从AgNP中溶解出来,这两种类型的银可能协同作用并产生更大的毒性反应。观察到的AgNP(在十亿分之一范围内)对甲壳类动物的极高毒性表明,就纳米银污染而言,这些生物是水生食物链中的一个脆弱环节。图形摘要ᅟ