Hong S-M, Bukhari W
School of Electronics Engineering, Kyungpook National University, Deagu, Korea.
Phys Med Biol. 2014 Jul 7;59(13):3555-73. doi: 10.1088/0031-9155/59/13/3555. Epub 2014 Jun 9.
The motion of thoracic and abdominal tumours induced by respiratory motion often exceeds 20 mm, and can significantly compromise dose conformality. Motion-adaptive radiotherapy aims to deliver a conformal dose distribution to the tumour with minimal normal tissue exposure by compensating for the tumour motion. This adaptive radiotherapy, however, requires the prediction of the tumour movement that can occur over the system latency period. In general, motion prediction approaches can be classified into two groups: model-based and model-free. Model-based approaches utilize a motion model in predicting respiratory motion. These approaches are computationally efficient and responsive to irregular changes in respiratory motion. Model-free approaches do not assume an explicit model of motion dynamics, and predict future positions by learning from previous observations. Artificial neural networks (ANNs) and support vector regression (SVR) are examples of model-free approaches. In this article, we present a prediction algorithm that combines a model-based and a model-free approach in a cascade structure. The algorithm, which we call EKF-SVR, first employs a model-based algorithm (named LCM-EKF) to predict the respiratory motion, and then uses a model-free SVR algorithm to estimate and correct the error of the LCM-EKF prediction. Extensive numerical experiments based on a large database of 304 respiratory motion traces are performed. The experimental results demonstrate that the EKF-SVR algorithm successfully reduces the prediction error of the LCM-EKF, and outperforms the model-free ANN and SVR algorithms in terms of prediction accuracy across lookahead lengths of 192, 384, and 576 ms.
由呼吸运动引起的胸腹部肿瘤的运动通常超过20毫米,并且会显著损害剂量适形性。运动自适应放疗旨在通过补偿肿瘤运动,在尽量减少正常组织受照的情况下,将适形剂量分布传递到肿瘤。然而,这种自适应放疗需要预测在系统延迟期内可能发生的肿瘤运动。一般来说,运动预测方法可分为两类:基于模型的和无模型的。基于模型的方法在预测呼吸运动时利用运动模型。这些方法计算效率高,并且对呼吸运动的不规则变化有响应。无模型方法不假定运动动力学的显式模型,而是通过从先前的观测中学习来预测未来位置。人工神经网络(ANN)和支持向量回归(SVR)就是无模型方法的例子。在本文中,我们提出了一种在级联结构中结合基于模型和无模型方法的预测算法。我们将该算法称为EKF-SVR,它首先采用基于模型的算法(名为LCM-EKF)来预测呼吸运动,然后使用无模型的SVR算法来估计和校正LCM-EKF预测的误差。基于包含304条呼吸运动轨迹的大型数据库进行了广泛的数值实验。实验结果表明,EKF-SVR算法成功降低了LCM-EKF的预测误差,并且在192、384和576毫秒的前瞻长度上,在预测准确性方面优于无模型的ANN和SVR算法。