Suppr超能文献

微管蛋白抑制剂:药效团建模、虚拟筛选与分子对接

Tubulin inhibitors: pharmacophore modeling, virtual screening and molecular docking.

作者信息

Niu Miao-Miao, Qin Jing-Yi, Tian Cai-Ping, Yan Xia-Fei, Dong Feng-Gong, Cheng Zheng-Qi, Fida Guissi, Yang Man, Chen Hai-Yan, Gu Yue-Qing

出版信息

Acta Pharmacol Sin. 2014 Jul;35(7):967-79. doi: 10.1038/aps.2014.34. Epub 2014 Jun 9.

Abstract

AIM

To construct a quantitative pharmacophore model of tubulin inhibitors and to discovery new leads with potent antitumor activities.

METHODS

Ligand-based pharmacophore modeling was used to identify the chemical features responsible for inhibiting tubulin polymerization. A set of 26 training compounds was used to generate hypothetical pharmacophores using the HypoGen algorithm. The structures were further validated using the test set, Fischer randomization method, leave-one-out method and a decoy set, and the best model was chosen to screen the Specs database. Hit compounds were subjected to molecular docking study using a Molecular Operating Environment (MOE) software and to biological evaluation in vitro.

RESULTS

Hypo1 was demonstrated to be the best pharmacophore model that exhibited the highest correlation coefficient (0.9582), largest cost difference (70.905) and lowest RMSD value (0.6977). Hypo1 consisted of one hydrogen-bond acceptor, a hydrogen-bond donor, a hydrophobic feature, a ring aromatic feature and three excluded volumes. Hypo1 was validated with four different methods and had a goodness-of-hit score of 0.81. When Hypo1 was used in virtual screening of the Specs database, 952 drug-like compounds were revealed. After docking into the colchicine-binding site of tubulin, 5 drug-like compounds with the required interaction with the critical amino acid residues and the binding free energies < -4 kcal/mol were selected as representative leads. Compounds 1 and 3 exhibited inhibitory activity against MCF-7 human breast cancer cells in vitro.

CONCLUSION

Hypo1 is a quantitative pharmacophore model for tubulin inhibitors, which not only provides a better understanding of their interaction with tubulin, but also assists in discovering new potential leads with antitumor activities.

摘要

目的

构建微管蛋白抑制剂的定量药效团模型,并发现具有强效抗肿瘤活性的新先导化合物。

方法

基于配体的药效团建模用于识别抑制微管蛋白聚合的化学特征。使用一组26个训练化合物,通过HypoGen算法生成假设的药效团。使用测试集、费舍尔随机化方法、留一法和诱饵集对结构进行进一步验证,并选择最佳模型筛选Specs数据库。对命中的化合物使用分子操作环境(MOE)软件进行分子对接研究,并进行体外生物学评价。

结果

Hypo1被证明是最佳的药效团模型,其相关系数最高(0.9582),成本差异最大(70.905),均方根偏差值最低(0.6977)。Hypo1由一个氢键受体、一个氢键供体、一个疏水特征、一个环芳香特征和三个排除体积组成。Hypo1用四种不同方法进行了验证,命中得分良好,为0.81。当Hypo1用于Specs数据库的虚拟筛选时,发现了952种类药物化合物。对接至微管蛋白的秋水仙碱结合位点后,选择了5种与关键氨基酸残基具有所需相互作用且结合自由能< -4 kcal/mol的类药物化合物作为代表性先导化合物。化合物1和3在体外对MCF-7人乳腺癌细胞表现出抑制活性。

结论

Hypo1是微管蛋白抑制剂的定量药效团模型,不仅有助于更好地理解它们与微管蛋白的相互作用,还有助于发现具有抗肿瘤活性的新潜在先导化合物。

相似文献

引用本文的文献

3
Identification of Novel β-Tubulin Inhibitors Using a Combined / Approach.采用联合方法鉴定新型β-微管蛋白抑制剂。
J Chem Inf Model. 2023 Oct 23;63(20):6396-6411. doi: 10.1021/acs.jcim.3c00939. Epub 2023 Sep 29.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验