Suppr超能文献

从隐形聚合物囊泡和丝状胶束到用于癌症治疗的“自组装”肽纳米颗粒。

From stealthy polymersomes and filomicelles to "self" Peptide-nanoparticles for cancer therapy.

作者信息

Oltra Núria Sancho, Nair Praful, Discher Dennis E

机构信息

Biophysical Engineering Laboratory, Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104; email:

出版信息

Annu Rev Chem Biomol Eng. 2014;5:281-99. doi: 10.1146/annurev-chembioeng-060713-040447.

Abstract

Polymersome vesicles and wormlike filomicelles self-assembled with amphiphilic, degradable block copolymers have recently shown promise in application to cancer therapy. In the case of filomicelles, dense, hydrophilic brushes of poly(ethylene glycol) on these nanoparticles combine with flexibility to nonspecifically delay clearance by phagocytes in vivo, which has motivated the development of "self" peptides that inhibit nanoparticle clearance through specific interactions. Delayed clearance, as well as robustness of polymer assemblies, opens the dosage window for delivery of increased drug loads in the polymer assemblies and increased tumor accumulation of drug(s). Antibody-targeting and combination therapies, such as with radiotherapy, are emerging in preclinical animal models of cancer. Such efforts are expected to combine with further advances in polymer composition, structure, and protein/peptide functionalization to further enhance transport through the circulation and permeation into disease sites.

摘要

最近,由两亲性、可降解嵌段共聚物自组装而成的聚合物囊泡和蠕虫状丝状胶束在癌症治疗应用中显示出了前景。就丝状胶束而言,这些纳米颗粒上密集的聚乙二醇亲水刷与柔韧性相结合,可在体内非特异性地延迟吞噬细胞的清除,这推动了通过特异性相互作用抑制纳米颗粒清除的“自”肽的开发。清除延迟以及聚合物组装体的稳定性,为在聚合物组装体中递送增加的药物负载量以及增加药物在肿瘤中的积累打开了剂量窗口。在癌症临床前动物模型中,抗体靶向和联合疗法(如与放射疗法联合)正在兴起。预计这些努力将与聚合物组成、结构以及蛋白质/肽功能化方面的进一步进展相结合,以进一步增强通过循环的运输以及向疾病部位的渗透。

相似文献

1
From stealthy polymersomes and filomicelles to "self" Peptide-nanoparticles for cancer therapy.
Annu Rev Chem Biomol Eng. 2014;5:281-99. doi: 10.1146/annurev-chembioeng-060713-040447.
3
Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery.
Int J Pharm. 2015 May 15;485(1-2):357-64. doi: 10.1016/j.ijpharm.2015.03.032. Epub 2015 Mar 18.
4
A polymeric micelle with an endosomal pH-sensitivity for intracellular delivery and enhanced antitumor efficacy of hydroxycamptothecin.
Acta Biomater. 2019 Apr 1;88:357-369. doi: 10.1016/j.actbio.2019.02.039. Epub 2019 Feb 26.
6
Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
Biomaterials. 2010 Mar;31(8):2278-92. doi: 10.1016/j.biomaterials.2009.11.047. Epub 2010 Jan 6.
7
Radioluminescent nanoparticles for radiation-controlled release of drugs.
J Control Release. 2019 Jun 10;303:237-252. doi: 10.1016/j.jconrel.2019.04.033. Epub 2019 Apr 23.
9
Tumor-targeting peptide functionalized PEG-PLA micelles for efficient drug delivery.
Biomater Sci. 2020 Apr 15;8(8):2274-2282. doi: 10.1039/c9bm02036e.

引用本文的文献

1
Precision nanotherapeutics for kidney disease: targeting inflammation and maladaptive repair.
Int Urol Nephrol. 2025 Sep 3. doi: 10.1007/s11255-025-04714-9.
2
Self-Assembled Recombinant Elastin and Globular Protein Vesicles with Tunable Properties for Diverse Applications.
Acc Chem Res. 2024 May 7;57(9):1227-1237. doi: 10.1021/acs.accounts.3c00694. Epub 2024 Apr 16.
3
Therapeutic Supramolecular Polymers: Designs and Applications.
Prog Polym Sci. 2024 Jan;148. doi: 10.1016/j.progpolymsci.2023.101769. Epub 2023 Dec 2.
4
Magnetic UiO-66-NH Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells.
ACS Omega. 2023 Oct 24;8(44):41321-41338. doi: 10.1021/acsomega.3c04863. eCollection 2023 Nov 7.
6
Equilibrium mechanisms of self-limiting assembly.
Rev Mod Phys. 2021 Apr-Jun;93(2). doi: 10.1103/revmodphys.93.025008. Epub 2021 Jun 11.
8
Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male.
Front Physiol. 2021 Nov 11;12:753686. doi: 10.3389/fphys.2021.753686. eCollection 2021.
10
Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers.
Annu Rev Biomed Eng. 2021 Jul 13;23:225-248. doi: 10.1146/annurev-bioeng-121219-024239. Epub 2021 Mar 31.

本文引用的文献

2
Anti-PEG IgM Response against PEGylated Liposomes in Mice and Rats.
Pharmaceutics. 2010 Dec 27;3(1):1-11. doi: 10.3390/pharmaceutics3010001.
3
Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy.
Biomaterials. 2013 Nov;34(33):8430-43. doi: 10.1016/j.biomaterials.2013.07.037. Epub 2013 Jul 27.
4
A biodegradable polymersome with pH-tuning on-off membrane based on poly(β-amino ester) for drug delivery.
Macromol Biosci. 2013 Jul;13(7):946-53. doi: 10.1002/mabi.201200468. Epub 2013 May 21.
6
pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.
ACS Nano. 2013 May 28;7(5):3912-25. doi: 10.1021/nn305466z. Epub 2013 Apr 30.
7
Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction.
Angew Chem Int Ed Engl. 2013 May 3;52(19):5070-3. doi: 10.1002/anie.201300397. Epub 2013 Mar 11.
8
Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.
Science. 2013 Feb 22;339(6122):971-5. doi: 10.1126/science.1229568.
9
Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.
Biomaterials. 2013 May;34(14):3647-57. doi: 10.1016/j.biomaterials.2013.01.084. Epub 2013 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验