den Hollander Bjørnar, Sundström Mira, Pelander Anna, Ojanperä Ilkka, Mervaala Eero, Korpi Esa Risto, Kankuri Esko
Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, Haartmaninkatu 8, FI-00014 University of Helsinki, Finland
Hjelt Institute, Department of Forensic Medicine, Kytösuontie 11, FI-00014 University of Helsinki, Finland.
Toxicol Sci. 2014 Sep;141(1):120-31. doi: 10.1093/toxsci/kfu108. Epub 2014 Jun 9.
The β-keto amphetamine (cathinone, β-KA) designer drugs such as mephedrone (4-methylmethcathinone, 4-MMC) show a large degree of structural similarity to amphetamines like methamphetamine (METH). However, little is currently known about whether these substances also share the potential neurotoxic properties of their non-keto amphetamine counterparts, or what mechanisms could be involved. Here, we evaluate the cytotoxicity of β-KAs in SH-SY5Y cells using lactate dehydrogenase (LDH) assays, assess the redox potential of a range of β-KAs and non-keto amphetamines using the sensitive redox indicator 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1), and explore the effect of 4-MMC on the formation of protein adducts using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) and on the mitochondrial respiratory chain using high-resolution respirometry. We show that treatment with β-KAs increases LDH release. Further, we demonstrate that even under physiological pH, β-KAs are effective and selective-as compared with their non-keto analogues-reductants in the presence of electron acceptors. Increased pH (range 7.6-8.0) greatly enhanced the reactivity up to sixfold. We found no evidence of protein adduct formation, suggesting the reactivity is due to direct electron transfer by the β-KAs. Finally, we show that 4-MMC and METH produce dissimilar effects on the respiratory chain. Our results indicate that β-KAs such as 4-MMC possess cytotoxic properties in vitro. Furthermore, in the presence of an electron-accepting redox partner, the ketone moiety of β-KAs is vital for pH-dependent redox reactivity. Further work is needed to establish the importance of β-KA redox properties and its potential toxicological importance in vivo.
β-酮基苯丙胺(卡西酮,β-KA)类新型毒品,如甲麻黄碱(4-甲基甲卡西酮,4-MMC),与甲基苯丙胺(METH)等苯丙胺类药物在结构上有很大的相似性。然而,目前对于这些物质是否也具有与其非酮基苯丙胺类似物相同的潜在神经毒性,或者涉及哪些机制,了解甚少。在此,我们使用乳酸脱氢酶(LDH)测定法评估β-KA在SH-SY5Y细胞中的细胞毒性,使用灵敏的氧化还原指示剂2-(4-碘苯基)-3-(4-硝基苯基)-5-(2,4-二磺酸苯基)-2H-四唑鎓(WST-1)评估一系列β-KA和非酮基苯丙胺的氧化还原电位,并使用超高效液相色谱/高分辨率飞行时间质谱(UHPLC-HR-TOFMS)探究4-MMC对蛋白质加合物形成的影响,以及使用高分辨率呼吸测定法探究其对线粒体呼吸链的影响。我们发现,用β-KA处理会增加LDH释放。此外,我们证明,即使在生理pH值下,与非酮类似物相比,β-KA在有电子受体存在时也是有效的选择性还原剂。pH值升高(范围为7.6 - 8.0)可使反应活性提高多达六倍。我们没有发现蛋白质加合物形成的证据,这表明反应活性是由β-KA直接电子转移引起的。最后,我们表明4-MMC和METH对呼吸链产生不同的影响。我们的结果表明,4-MMC等β-KA在体外具有细胞毒性。此外,在有电子接受性氧化还原伙伴存在的情况下,β-KA的酮基对于pH依赖性氧化还原反应活性至关重要。需要进一步开展工作来确定β-KA氧化还原特性的重要性及其在体内潜在的毒理学重要性。