Krishnakumar Radha, Grose Carissa, Haft Daniel H, Zaveri Jayshree, Alperovich Nina, Gibson Daniel G, Merryman Chuck, Glass John I
Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA.
Nucleic Acids Res. 2014 Aug;42(14):e111. doi: 10.1093/nar/gku509. Epub 2014 Jun 9.
Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination.
为了直接在目标生物体中实现快速且大规模的基因组修饰,我们开发了一种新的基因组工程策略,该策略结合了生物信息学辅助设计、大型合成DNA和位点特异性重组酶。我们使用Cre重组酶将大肠杆菌基因组的一个126 kb目标片段与一个72 kb的合成DNA盒进行了交换,从而在一次重组事件中有效地从三个非连续区域中消除了超过54 kb的基因组DNA。通过Cre重组酶的作用,我们观察到天然序列被修饰后的合成序列完全取代,且没有同源重组的竞争。由于Cre-lox系统的多功能性和高效性,该方法可用于该系统发挥功能的任何生物体,也可适用于与其他高精度基因组工程系统联合使用。与当今基因组工程中的迭代方法相比,我们预计该方法将通过整合缺失分析数据、转录组学、合成生物学和位点特异性重组,极大地加速简化、模块化和优化基因组的创建。