Suppr超能文献

利用生态宏基因组学从复杂土壤群落中鉴别植物寄生线虫

Discrimination of plant-parasitic nematodes from complex soil communities using ecometagenetics.

作者信息

Porazinska Dorota L, Morgan Matthew J, Gaspar John M, Court Leon N, Hardy Christopher M, Hodda Mike

出版信息

Phytopathology. 2014 Jul;104(7):749-61. doi: 10.1094/PHYTO-08-13-0236-R.

Abstract

Many plant pathogens are microscopic, cryptic, and difficult to diagnose. The new approach of ecometagenetics, involving ultrasequencing, bioinformatics, and biostatistics, has the potential to improve diagnoses of plant pathogens such as nematodes from the complex mixtures found in many agricultural and biosecurity situations. We tested this approach on a gradient of complexity ranging from a few individuals from a few species of known nematode pathogens in a relatively defined substrate to a complex and poorly known suite of nematode pathogens in a complex forest soil, including its associated biota of unknown protists, fungi, and other microscopic eukaryotes. We added three known but contrasting species (Pratylenchus neglectus, the closely related P. thornei, and Heterodera avenae) to half the set of substrates, leaving the other half without them. We then tested whether all nematode pathogens-known and unknown, indigenous, and experimentally added-were detected consistently present or absent. We always detected the Pratylenchus spp. correctly and with the number of sequence reads proportional to the numbers added. However, a single cyst of H. avenae was only identified approximately half the time it was present. Other plant-parasitic nematodes and nematodes from other trophic groups were detected well but other eukaryotes were detected less consistently. DNA sampling errors or informatic errors or both were involved in misidentification of H. avenae; however, the proportions of each varied in the different bioinformatic pipelines and with different parameters used. To a large extent, false-positive and false-negative errors were complementary: pipelines and parameters with the highest false-positive rates had the lowest false-negative rates and vice versa. Sources of error identified included assumptions in the bioinformatic pipelines, slight differences in primer regions, the number of sequence reads regarded as the minimum threshold for inclusion in analysis, and inaccessible DNA in resistant life stages. Identification of the sources of error allows us to suggest ways to improve identification using ecometagenetics.

摘要

许多植物病原体微小、隐匿,难以诊断。生态宏基因组学的新方法,包括超测序、生物信息学和生物统计学,有潜力改善对植物病原体的诊断,比如在许多农业和生物安全环境中发现的复杂混合物中的线虫。我们在一个复杂性梯度上测试了这种方法,范围从相对明确的基质中几种已知线虫病原体的少数个体,到复杂森林土壤中一套复杂且鲜为人知的线虫病原体,包括其相关的未知原生生物、真菌和其他微观真核生物群落。我们在一半的基质中添加了三种已知但截然不同的物种(忽视短体线虫、近缘的索氏短体线虫和燕麦孢囊线虫),另一半则不添加。然后我们测试是否能一致地检测到所有线虫病原体——已知和未知的、本地的以及实验添加的——是否存在。我们总能正确检测到短体线虫属,且序列读数的数量与添加的数量成比例。然而,燕麦孢囊线虫的单个孢囊只有大约一半的时间能被识别出来。其他植物寄生线虫和来自其他营养类群的线虫检测效果良好,但其他真核生物的检测一致性较差。燕麦孢囊线虫的错误识别涉及DNA采样误差或信息学误差或两者皆有;然而,每种误差的比例在不同的生物信息学流程以及使用不同参数时有所不同。在很大程度上,假阳性和假阴性误差是互补的:假阳性率最高的流程和参数假阴性率最低,反之亦然。已确定的误差来源包括生物信息学流程中的假设、引物区域的细微差异、被视为纳入分析的最低阈值的序列读数数量,以及抗性生命阶段中无法获取的DNA。识别误差来源使我们能够提出利用生态宏基因组学改进识别的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验