Suppr超能文献

失控的协同进化:对可遗传和不可遗传环境的适应

Runaway coevolution: adaptation to heritable and nonheritable environments.

作者信息

Drown Devin M, Wade Michael J

机构信息

Department of Biology, Indiana University, Bloomington, Indiana, 47405.

出版信息

Evolution. 2014 Oct;68(10):3039-46. doi: 10.1111/evo.12470. Epub 2014 Jul 9.

Abstract

Populations evolve in response to the external environment, whether abiotic (e.g., climate) or biotic (e.g., other conspecifics). We investigated how adaptation to biotic, heritable environments differs from adaptation to abiotic, nonheritable environments. We found that, for the same selection coefficients, the coadaptive process between genes and heritable environments is much faster than genetic adaptation to an abiotic nonheritable environment. The increased rate of adaptation results from the positive association generated by reciprocal selection between the heritable environment and the genes responding to it. These associations result in a runaway process of adaptive coevolution, even when the genes creating the heritable environment and genes responding to the heritable environment are unlinked. Although tightening the degree of linkage accelerates the coadaptive process, the acceleration caused by a comparable amount of inbreeding is greater, because inbreeding has a cumulative effect on reducing functional recombination over generations. Our results suggest that that adaptation to local abiotic environmental variation may result in the rapid diversification of populations and subsequent reproductive isolation not directly but rather via its effects on heritable environments and the genes responding to them.

摘要

种群会根据外部环境而进化,无论是非生物环境(如气候)还是生物环境(如其他同种生物)。我们研究了对生物可遗传环境的适应与对非生物不可遗传环境的适应有何不同。我们发现,对于相同的选择系数,基因与可遗传环境之间的共同适应过程比基因对非生物不可遗传环境的适应要快得多。适应速度的提高源于可遗传环境与对其作出反应的基因之间的相互选择所产生的正相关。即使创造可遗传环境的基因与对可遗传环境作出反应的基因没有连锁,这些关联也会导致适应性共同进化的失控过程。虽然加强连锁程度会加速共同适应过程,但同等程度的近亲繁殖所导致的加速作用更大,因为近亲繁殖对减少几代人的功能重组具有累积效应。我们的研究结果表明,对当地非生物环境变化的适应可能不会直接导致种群的快速多样化和随后的生殖隔离,而是通过其对可遗传环境以及对它们作出反应的基因的影响来实现。

相似文献

1
Runaway coevolution: adaptation to heritable and nonheritable environments.
Evolution. 2014 Oct;68(10):3039-46. doi: 10.1111/evo.12470. Epub 2014 Jul 9.
4
Multidimensional (co)evolutionary stability.
Am Nat. 2014 Aug;184(2):158-71. doi: 10.1086/677137. Epub 2014 Jul 8.
6
The Genetics of Phenotypic Plasticity. XIV. Coevolution.
Am Nat. 2015 May;185(5):594-609. doi: 10.1086/680552. Epub 2015 Feb 25.
7
The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success.
Biol Rev Camb Philos Soc. 2017 May;92(2):939-952. doi: 10.1111/brv.12263. Epub 2016 Mar 23.
8
Maternal-Offspring Interactions: Reciprocally Coevolving Social Environments.
J Hered. 2022 Feb 17;113(1):54-60. doi: 10.1093/jhered/esab044.
9
A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
Biol Rev Camb Philos Soc. 2007 May;82(2):173-211. doi: 10.1111/j.1469-185X.2006.00004.x.

引用本文的文献

1
Selection on the joint actions of pairs leads to divergent adaptation and coadaptation of care-giving parents during pre-hatching care.
Proc Biol Sci. 2024 Jun;291(2024):20240876. doi: 10.1098/rspb.2024.0876. Epub 2024 Jun 12.
2
Parental care shapes the evolution of molecular genetic variation.
Evol Lett. 2023 Sep 5;7(6):379-388. doi: 10.1093/evlett/qrad039. eCollection 2023 Dec.
3
Community-level evolutionary processes: Linking community genetics with replicator-interactor theory.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2202538119. doi: 10.1073/pnas.2202538119. Epub 2022 Nov 2.
5
Maternal-Offspring Interactions: Reciprocally Coevolving Social Environments.
J Hered. 2022 Feb 17;113(1):54-60. doi: 10.1093/jhered/esab044.
6
Baby makes three: Maternal, paternal, and zygotic genetic effects shape larval phenotypic evolution.
Evolution. 2021 Jul;75(7):1607-1618. doi: 10.1111/evo.14244. Epub 2021 Jun 7.
7
Selfing is the safest sex for .
Elife. 2021 Jan 11;10:e62587. doi: 10.7554/eLife.62587.
9
Cooperative interactions within the family enhance the capacity for evolutionary change in body size.
Nat Ecol Evol. 2017 Jul;1(7):0178. doi: 10.1038/s41559-017-0178. Epub 2017 May 26.
10
Nuclear-mitochondrial epistasis: a gene's eye view of genomic conflict.
Ecol Evol. 2016 Aug 18;6(18):6460-6472. doi: 10.1002/ece3.2345. eCollection 2016 Sep.

本文引用的文献

1
SEXUAL SELECTION AND THE EVOLUTION OF FEMALE CHOICE.
Evolution. 1982 Jan;36(1):1-12. doi: 10.1111/j.1558-5646.1982.tb05003.x.
2
INTERACTING PHENOTYPES AND THE EVOLUTIONARY PROCESS: I. DIRECT AND INDIRECT GENETIC EFFECTS OF SOCIAL INTERACTIONS.
Evolution. 1997 Oct;51(5):1352-1362. doi: 10.1111/j.1558-5646.1997.tb01458.x.
3
SKEPTICISM TOWARDS SANTA ROSALIA, OR WHY ARE THERE SO FEW KINDS OF ANIMALS?
Evolution. 1981 Jan;35(1):124-138. doi: 10.1111/j.1558-5646.1981.tb04864.x.
4
Symbiote transmission and maintenance of extra-genomic associations.
Front Microbiol. 2014 Feb 24;5:46. doi: 10.3389/fmicb.2014.00046. eCollection 2014.
5
Why epistasis is important for selection and adaptation.
Evolution. 2013 Dec;67(12):3501-11. doi: 10.1111/evo.12214. Epub 2013 Aug 12.
6
The quantitative genetics of indirect genetic effects: a selective review of modelling issues.
Heredity (Edinb). 2014 Jan;112(1):61-9. doi: 10.1038/hdy.2013.15. Epub 2013 Mar 20.
8
Evolutionary consequences of indirect genetic effects.
Trends Ecol Evol. 1998 Feb 1;13(2):64-9. doi: 10.1016/s0169-5347(97)01233-0.
9
Maternal-zygotic epistasis and the evolution of genetic diseases.
J Biomed Biotechnol. 2010;2010:478732. doi: 10.1155/2010/478732. Epub 2010 May 10.
10
Interacting phenotypes and the evolutionary process. III. Social evolution.
Evolution. 2010 Sep;64(9):2558-74. doi: 10.1111/j.1558-5646.2010.01012.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验