Suppr超能文献

基于似然性的二元事件随机效应Meta分析

Likelihood-Based Random-Effect Meta-Analysis of Binary Events.

作者信息

Amatya Anup, Bhaumik Dulal K, Normand Sharon-Lise, Greenhouse Joel, Kaizar Eloise, Neelon Brian, Gibbons Robert D

机构信息

a Department of Health Sciences , New Mexico State University , Las Cruces , New Mexico , USA.

出版信息

J Biopharm Stat. 2015;25(5):984-1004. doi: 10.1080/10543406.2014.920348. Epub 2014 Jun 11.

Abstract

Meta-analysis has been used extensively for evaluation of efficacy and safety of medical interventions. Its advantages and utilities are well known. However, recent studies have raised questions about the accuracy of the commonly used moment-based meta-analytic methods in general and for rare binary outcomes in particular. The issue is further complicated for studies with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alternative to moment-based methods such as inverse-variance weighted fixed- and random-effects estimators. In this article, we compare and contrast different mixed-effect modeling strategies in the context of meta-analysis. Their performance in estimation and testing of overall effect and heterogeneity are evaluated when combining results from studies with a binary outcome. Models that allow heterogeneity in both baseline rate and treatment effect across studies have low type I and type II error rates, and their estimates are the least biased among the models considered.

摘要

荟萃分析已被广泛用于评估医学干预措施的疗效和安全性。其优势和用途广为人知。然而,最近的研究对一般常用的基于矩的荟萃分析方法的准确性提出了质疑,尤其是对于罕见的二元结局。对于效应大小存在异质性的研究,这个问题更加复杂。基于似然的混合效应模型为基于矩的方法(如逆方差加权固定效应和随机效应估计器)提供了一种替代方法。在本文中,我们在荟萃分析的背景下比较和对比了不同的混合效应建模策略。当合并具有二元结局的研究结果时,评估了它们在总体效应估计和检验以及异质性方面的表现。允许各研究之间基线率和治疗效应存在异质性的模型具有较低的I型和II型错误率,并且在考虑的模型中其估计偏差最小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验