Department of Statistical Science, Southern Methodist University, USA.
Institute for Insight, Robinson College of Business, Georgia State University, USA.
Contemp Clin Trials. 2021 Aug;107:106440. doi: 10.1016/j.cct.2021.106440. Epub 2021 May 17.
In meta-analysis, the heterogeneity of effect sizes across component studies is typically described by a variance parameter in a random-effects (Re) model. In the literature, methods for constructing confidence intervals (CIs) for the parameter often assume that study-level effect sizes are normally distributed. However, this assumption might be violated in practice, especially in meta-analysis of rare binary events. We propose to use jackknife empirical likelihood (JEL), a nonparametric approach that uses jackknife pseudo-values, to construct CIs for the heterogeneity parameter. To compute jackknife pseudo-values, we employ a moment-based estimator and consider two commonly used weighing schemes (i.e., equal and inverse variance weights). We prove that with each scheme, the resulting log empirical likelihood ratio follows a chi-square distribution asymptotically. We further examine the performance of the proposed JEL methods and compare them with existing CIs through simulation studies and data examples that focus on data of rare binary events. Our numerical results suggest that the JEL method with equal weights compares favorably to alternatives, especially when (observed) effect sizes are non-normal and the number of component studies is large. Thus, it is worth serious consideration in statistical inference.
在荟萃分析中,通常通过随机效应(Re)模型中的方差参数来描述各组成研究的效应大小的异质性。在文献中,用于构建参数置信区间(CI)的方法通常假设研究水平的效应大小呈正态分布。然而,这种假设在实践中可能会被违反,尤其是在罕见二元事件的荟萃分析中。我们建议使用刀切经验似然(JEL),这是一种使用刀切伪值的非参数方法,来构建异质性参数的 CI。为了计算刀切伪值,我们采用基于矩的估计量,并考虑两种常用的加权方案(即,等权重和倒数方差权重)。我们证明,对于每种方案,得到的对数经验似然比在渐近上服从卡方分布。我们通过关注罕见二元事件数据的模拟研究和实际数据示例进一步研究了所提出的 JEL 方法的性能,并将其与现有 CI 进行了比较。我们的数值结果表明,等权重的 JEL 方法与其他方法相比具有优势,尤其是当(观察到的)效应大小非正态且组成研究的数量较大时。因此,它在统计推断中值得认真考虑。