Suppr超能文献

自动化、基于轮廓的细胞行为跟踪和分析,适用于不同复杂程度和细胞密度的环境,时间跨度长。

Automated, contour-based tracking and analysis of cell behaviour over long time scales in environments of varying complexity and cell density.

机构信息

Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA.

Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA Department of Physics, Syracuse University, Syracuse, NY 13244, USA.

出版信息

J R Soc Interface. 2014 Aug 6;11(97):20140386. doi: 10.1098/rsif.2014.0386.

Abstract

Understanding single and collective cell motility in model environments is foundational to many current research efforts in biology and bioengineering. To elucidate subtle differences in cell behaviour despite cell-to-cell variability, we introduce an algorithm for tracking large numbers of cells for long time periods and present a set of physics-based metrics that quantify differences in cell trajectories. Our algorithm, termed automated contour-based tracking for in vitro environments (ACTIVE), was designed for adherent cell populations subject to nuclear staining or transfection. ACTIVE is distinct from existing tracking software because it accommodates both variability in image intensity and multi-cell interactions, such as divisions and occlusions. When applied to low-contrast images from live-cell experiments, ACTIVE reduced error in analysing cell occlusion events by as much as 43% compared with a benchmark-tracking program while simultaneously tracking cell divisions and resulting daughter-daughter cell relationships. The large dataset generated by ACTIVE allowed us to develop metrics that capture subtle differences between cell trajectories on different substrates. We present cell motility data for thousands of cells studied at varying densities on shape-memory-polymer-based nanotopographies and identify several quantitative differences, including an unanticipated difference between two 'control' substrates. We expect that ACTIVE will be immediately useful to researchers who require accurate, long-time-scale motility data for many cells.

摘要

理解模型环境中单细胞和群体细胞的运动性是当前生物学和生物工程许多研究工作的基础。为了阐明尽管细胞间存在可变性,但细胞行为的细微差异,我们引入了一种用于长时间跟踪大量细胞的算法,并提出了一组基于物理学的度量标准,用于量化细胞轨迹的差异。我们的算法称为用于体外环境的基于自动轮廓的跟踪(ACTIVE),是为受核染色或转染影响的贴壁细胞群体设计的。ACTIVE 与现有的跟踪软件不同,因为它可以适应图像强度的可变性和多细胞相互作用,如分裂和遮挡。当应用于活细胞实验的低对比度图像时,与基准跟踪程序相比,ACTIVE 将分析细胞遮挡事件的误差降低了多达 43%,同时还可以跟踪细胞分裂和由此产生的子细胞关系。ACTIVE 生成的大型数据集使我们能够开发出能够捕捉不同基底上细胞轨迹之间细微差异的度量标准。我们展示了在基于形状记忆聚合物的纳米形貌上以不同密度研究的数千个细胞的细胞迁移数据,并确定了几个定量差异,包括两个“对照”基底之间的意外差异。我们预计 ACTIVE 将立即对需要大量细胞进行准确长时间尺度迁移数据的研究人员有用。

相似文献

4
An affine transformation invariance approach to cell tracking.一种用于细胞追踪的仿射变换不变性方法。
Comput Med Imaging Graph. 2008 Oct;32(7):554-65. doi: 10.1016/j.compmedimag.2008.06.004. Epub 2008 Jul 30.
6
Coupled parametric active contours.耦合参数活动轮廓
IEEE Trans Pattern Anal Mach Intell. 2005 Nov;27(11):1838-42. doi: 10.1109/TPAMI.2005.214.
8
Automatic tracking of Escherichia coli bacteria.大肠杆菌的自动追踪
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):824-32. doi: 10.1007/978-3-540-85988-8_98.

引用本文的文献

3
Identifying the mechanism for superdiffusivity in mouse fibroblast motility.鉴定小鼠成纤维细胞运动中超扩散的机制。
PLoS Comput Biol. 2019 Feb 14;15(2):e1006732. doi: 10.1371/journal.pcbi.1006732. eCollection 2019 Feb.

本文引用的文献

1
3D actin network centerline extraction with multiple active contours.基于多个活动轮廓的三维肌动蛋白网络中心线提取
Med Image Anal. 2014 Feb;18(2):272-84. doi: 10.1016/j.media.2013.10.015. Epub 2013 Nov 16.
2
The syncytial Drosophila embryo as a mechanically excitable medium.合胞体果蝇胚胎作为一种可兴奋的机械介质。
PLoS One. 2013 Oct 30;8(10):e77216. doi: 10.1371/journal.pone.0077216. eCollection 2013.
5
A new way of tracking motion, shape, and divisions.一种追踪运动、形状和分裂的新方法。
Eur Biophys J. 2013 Aug;42(8):647-54. doi: 10.1007/s00249-013-0912-2. Epub 2013 Jun 1.
6
Dynamic and reversible surface topography influences cell morphology.动态且可恢复的表面形貌会影响细胞形态。
J Biomed Mater Res A. 2013 Aug;101(8):2313-21. doi: 10.1002/jbm.a.34543. Epub 2013 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验