Physics Department, Syracuse University, Syracuse, New York, United States of America.
Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, New York, United States of America.
PLoS Comput Biol. 2019 Feb 14;15(2):e1006732. doi: 10.1371/journal.pcbi.1006732. eCollection 2019 Feb.
We seek to characterize the motility of mouse fibroblasts on 2D substrates. Utilizing automated tracking techniques, we find that cell trajectories are super-diffusive, where displacements scale faster than t1/2 in all directions. Two mechanisms have been proposed to explain such statistics in other cell types: run and tumble behavior with Lévy-distributed run times, and ensembles of cells with heterogeneous speed and rotational noise. We develop an automated toolkit that directly compares cell trajectories to the predictions of each model and demonstrate that ensemble-averaged quantities such as the mean-squared displacements and velocity autocorrelation functions are equally well-fit by either model. However, neither model correctly captures the short-timescale behavior quantified by the displacement probability distribution or the turning angle distribution. We develop a hybrid model that includes both run and tumble behavior and heterogeneous noise during the runs, which correctly matches the short-timescale behaviors and indicates that the run times are not Lévy distributed. The analysis tools developed here should be broadly useful for distinguishing between mechanisms for superdiffusivity in other cells types and environments.
我们旨在描述 2D 基质上的小鼠成纤维细胞的运动特性。利用自动跟踪技术,我们发现细胞轨迹是超扩散的,在所有方向上,位移的尺度比 t1/2 快。已经提出了两种机制来解释其他细胞类型中的这种统计数据:具有 Lévy 分布的运行时间的运行和翻转行为,以及具有不同速度和旋转噪声的细胞集合。我们开发了一个自动工具包,可以将细胞轨迹直接与每个模型的预测进行比较,并证明均方位移和速度自相关函数等平均量同样适合于两种模型。然而,这两种模型都不能正确地捕捉由位移概率分布或转角分布量化的短时间尺度行为。我们开发了一种混合模型,其中包括运行和翻转行为以及运行过程中的异质噪声,该模型正确地匹配了短时间尺度行为,并表明运行时间不是 Lévy 分布的。这里开发的分析工具应该对区分其他细胞类型和环境中超扩散的机制具有广泛的用途。