Suppr超能文献

一种用于在电子病历数据中检测药物性肝损伤的自动化因果关系评估算法。

An automated causality assessment algorithm to detect drug-induced liver injury in electronic medical record data.

作者信息

Cheetham T Craig, Lee Janet, Hunt Christine M, Niu Fang, Reisinger Steph, Murray Rich, Powell Greg, Papay Julie

机构信息

Kaiser Permanente Southern California, Pharmacy Analytical Services, CA, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2014 Jun;23(6):601-8. doi: 10.1002/pds.3531. Epub 2013 Oct 21.

Abstract

PURPOSE

The aim of this study was to develop an automated causality assessment algorithm to identify drug-induced liver injury.

METHODS

The Roussel Uclaf Causality Assessment Method (RUCAM) is an algorithm for determining the causal association between a drug and liver injury. In collaboration with hepatology experts, definitions were developed for the RUCAM criteria to operationalize an electronic RUCAM (eRUCAM). The eRUCAM was tested in a population of patients taking 14 drugs with a characteristic phenotype for liver injury. Quality assurance for programming specifications involved comparisons between scores generated by the eRUCAM, for probable and highly probable cases, and expert manual RUCAM (n = 20). Concordance between eRUCAM and manual RUCAM subscores and total score was tested using the Wilcoxon signed rank test.

RESULTS

Causality scores were the same for 6 of 20 patients (30%) by manual and eRUCAM algorithms. Analysis of subscores revealed ≥80% concordance between manual and eRUCAM for five of the seven criteria. In general, the total scores tended to be higher for the eRUCAM compared with the manual RUCAM. Programming issues were identified for criterion 5 'non-drug causes of liver injury' where significant differences existed between manual and eRUCAM scoring (p = 0.001). For criterion 5, identical scores occurred in 9 of 20 patients (45%), and manual review identified additional codes, timing criteria, and laboratory results for improving subsequent eRUCAM revisions.

CONCLUSION

The eRUCAM had generally good concordance with manual RUCAM scoring. These preliminary findings suggest that the eRUCAM algorithm is feasible and could have application in clinical practice and drug safety surveillance.

摘要

目的

本研究旨在开发一种自动因果关系评估算法,以识别药物性肝损伤。

方法

鲁塞尔·优克福因果关系评估方法(RUCAM)是一种用于确定药物与肝损伤之间因果关联的算法。与肝病专家合作,为RUCAM标准制定了定义,以实现电子RUCAM(eRUCAM)。eRUCAM在服用14种具有肝损伤特征性表型药物的患者群体中进行了测试。编程规范的质量保证涉及比较eRUCAM生成的可能和极可能病例的分数与专家手动RUCAM(n = 20)的分数。使用Wilcoxon符号秩检验测试eRUCAM与手动RUCAM子分数和总分之间的一致性。

结果

通过手动和eRUCAM算法,20名患者中有6名(30%)的因果关系分数相同。对子分数的分析显示,七个标准中的五个标准,手动和eRUCAM之间的一致性≥80%。总体而言,与手动RUCAM相比,eRUCAM的总分往往更高。在标准5“肝损伤的非药物原因”中发现了编程问题,手动和eRUCAM评分之间存在显著差异(p = 0.001)。对于标准5,20名患者中有9名(45%)的分数相同,手动审查确定了额外的编码、时间标准和实验室结果,以改进后续的eRUCAM修订。

结论

eRUCAM与手动RUCAM评分总体上具有良好的一致性。这些初步发现表明,eRUCAM算法是可行的,可应用于临床实践和药物安全监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验