Dugailly Pierre-Michel, Beyer Benoît, Sobczak Stéphane, Salvia Patrick, Feipel Véronique
Research Unit in Osteopathy, Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Functional Anatomy, Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Research Unit in Osteopathy, Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Functional Anatomy, Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium; Laboratory of Anatomy, Biomechanics and Organogenesis (LABO), Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Man Ther. 2014 Oct;19(5):472-7. doi: 10.1016/j.math.2014.04.017. Epub 2014 May 21.
Studies reporting spine kinematics during cervical manipulation are usually related to continuous global head-trunk motion or discrete angular displacements for pre-positioning. To date, segmental data analyzing continuous kinematics of cervical manipulation is lacking. The objective of this study was to investigate upper cervical spine (UCS) manipulation in vitro. This paper reports an inter- and intra-rater reliability analysis of kinematics during high velocity low amplitude manipulation of the UCS. Integration of kinematics into specific-subject 3D models has been processed as well for providing anatomical motion representation during thrust manipulation. Three unembalmed specimens were included in the study. Restricted dissection was realized to attach technical clusters to each bone of interest (skull, C1-C4 and sternum). During manipulation, bone motion data was computed using an optoelectronic system. The reliability of manipulation kinematics was assessed for three experimented practitioners performing two trials of 3 repetitions on two separate days. During UCS manipulation, average global head-trunk motion ROM (±SD) were 14 ± 5°, 35 ± 7° and 14 ± 8° for lateral bending, axial rotation and flexion-extension, respectively. For regional ROM (C0-C2), amplitudes were 10 ± 5°, 30 ± 5° and 16 ± 4° for the same respective motions. Concerning the reliability, mean RMS ranged from 1° to 4° and from 3° to 6° for intra- and inter-rater comparisons, respectively. The present results confirm the limited angular displacement during manipulation either for global head-trunk or for UCS motion components, especially for axial rotation. Additionally, kinematics variability was low confirming intra- and inter-practitioners consistency of UCS manipulation achievement.
报告颈椎手法操作过程中脊柱运动学的研究通常与连续的整体头部 - 躯干运动或预定位的离散角位移有关。迄今为止,缺乏分析颈椎手法操作连续运动学的节段性数据。本研究的目的是在体外研究上颈椎(UCS)手法操作。本文报告了UCS高速低幅手法操作过程中运动学的评分者间和评分者内可靠性分析。为了在推力手法操作期间提供解剖学运动表示,还将运动学整合到特定个体的三维模型中。该研究纳入了三个未防腐的标本。进行了有限的解剖,将技术簇附着到每个感兴趣的骨骼(颅骨、C1 - C4和胸骨)上。在手法操作过程中,使用光电系统计算骨骼运动数据。对三名有经验的从业者进行评估,他们在两个不同的日子里进行了两次试验,每次试验重复3次,以评估手法操作运动学的可靠性。在UCS手法操作期间,横向弯曲、轴向旋转和屈伸的平均整体头部 - 躯干运动ROM(±标准差)分别为14±5°、35±7°和14±8°。对于区域ROM(C0 - C2),相同相应运动的幅度分别为10±5°、30±5°和16±4°。关于可靠性,评分者内比较的平均RMS范围为1°至4°,评分者间比较的平均RMS范围为3°至6°。目前的结果证实,无论是整体头部 - 躯干还是UCS运动分量,手法操作期间的角位移都有限,尤其是轴向旋转。此外,运动学变异性较低,证实了UCS手法操作完成在从业者内和从业者间的一致性。