Eyal Guy, Mansvelder Huibert D, de Kock Christiaan P J, Segev Idan
Department of Neurobiology.
Center for Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 The Netherlands.
J Neurosci. 2014 Jun 11;34(24):8063-71. doi: 10.1523/JNEUROSCI.5431-13.2014.
This study highlights a new and powerful direct impact of the dendritic tree (the input region of neurons) on the encoding capability of the axon (the output region). We show that the size of the dendritic arbors (its impedance load) strongly modulates the shape of the action potential (AP) onset at the axon initial segment; it is accelerated in neurons with larger dendritic surface area. AP onset rapidness is key in determining the capability of the axonal spikes to encode (phase lock to) rapid changes in synaptic inputs. Hence, our findings imply that neurons with larger dendritic arbors have improved encoding capabilities. This "dendritic size effect" was explored both analytically as well as numerically, in simplified and detailed models of 3D reconstructed layer 2/3 cortical pyramidal cells of rats and humans. The cutoff frequency of spikes phase locking to modulated inputs increased from 100 to 200 Hz in pyramidal cells of young rats to 400-600 Hz in human cells. In the latter case, phase locking reached close to 1 KHz in in vivo-like conditions. This work highlights new and functionally profound cross talk between the dendritic tree and the axon initial segment, providing new understanding of neurons as sophisticated nonlinear input/output devices.
本研究突出了树突(神经元的输入区域)对轴突(输出区域)编码能力的一种新的、强大的直接影响。我们表明,树突分支的大小(其阻抗负载)强烈调节轴突起始段动作电位(AP)起始的形状;在树突表面积较大的神经元中,动作电位起始会加速。动作电位起始的快速性是决定轴突尖峰对突触输入快速变化进行编码(锁相)能力的关键。因此,我们的研究结果表明,树突分支较大的神经元具有更强的编码能力。这种“树突大小效应”在大鼠和人类三维重建的第2/3层皮质锥体细胞的简化和详细模型中,通过解析和数值方法进行了探究。在年轻大鼠的锥体细胞中,尖峰对调制输入的锁相截止频率从100赫兹增加到200赫兹,在人类细胞中则增加到400 - 600赫兹。在后一种情况下,在类似体内的条件下,锁相接近1千赫兹。这项工作突出了树突和轴突起始段之间新的、功能上深刻的相互作用,为将神经元理解为复杂的非线性输入/输出装置提供了新的认识。