人类新皮质树突中信号传播速度加快。
Accelerated signal propagation speed in human neocortical dendrites.
作者信息
Oláh Gáspár, Lákovics Rajmund, Shapira Sapir, Leibner Yonatan, Szücs Attila, Csajbók Éva Adrienn, Barzó Pál, Molnár Gábor, Segev Idan, Tamás Gábor
机构信息
HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.
Edmond and Lily Safra center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
出版信息
Elife. 2025 Apr 24;13:RP93781. doi: 10.7554/eLife.93781.
Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.
人类特有的认知能力依赖于大脑皮层中的信息处理,与啮齿动物相比,大脑皮层中的神经元要大得多,其突起更长且更稀疏。我们发现,在通过突触连接的第2/3层锥体神经元(L2/3 PCs)中,人类和啮齿动物从胞体到胞体的信号传播延迟相似。为了补偿神经元更长的突起,人类轴突和/或树突中的膜电位变化必须传播得更快。轴突和树突记录表明,人类和大鼠轴突中动作电位(APs)的传播速度相似,但人类树突中兴奋性突触后电位(EPSPs)的正向传播和APs的反向传播分别快26%和47%。基于实验的详细生物物理模型表明,人类皮层树突中EPSP传播加速的关键因素是大型基底树突在胞体处施加的大电导负载。此外,人类更大的树突直径以及电缆和离子通道特性的差异有助于增强信号传播。我们的综合实验和建模研究为缩放规则提供了新的见解,这些规则有助于维持信息处理速度,尽管人类皮层中的神经元又大又稀疏。