School of Biological Sciences, University of Auckland, Auckland, New Zealand;
Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
Am J Physiol Cell Physiol. 2014 Sep 15;307(6):C499-507. doi: 10.1152/ajpcell.00006.2014. Epub 2014 Jun 11.
As ~80% of diabetic patients die from heart failure, an understanding of diabetic cardiomyopathy is crucial. Mitochondria occupy 35-40% of the mammalian cardiomyocyte volume and supply 95% of the heart's ATP, and diabetic heart mitochondria show impaired structure, arrangement, and function. We predict that bioenergetic inefficiencies are present in diabetic heart mitochondria; therefore, we explored mitochondrial proton and electron handling by linking oxygen flux to steady-state ATP synthesis, reactive oxygen species (ROS) production, and mitochondrial membrane potential (ΔΨ) within rat heart tissues. Sprague-Dawley rats were injected with streptozotocin (STZ, 55 mg/kg) to induce type 1 diabetes or an equivalent volume of saline (control, n = 12) and fed standard rat chow for 8 wk. By coupling high-resolution respirometers with purpose-built fluorometers, we followed Magnesium Green (ATP synthesis), Amplex UltraRed (ROS production), and safranin-O (ΔΨ). Relative to control rats, the mass-specific respiration of STZ-diabetic hearts was depressed in oxidative phosphorylation (OXPHOS) states. Steady-state ATP synthesis capacity was almost one-third lower in STZ-diabetic heart, which, relative to oxygen flux, equates to an estimated 12% depression in OXPHOS efficiency. However, with anoxic transition, STZ-diabetic and control heart tissues showed similar ATP hydrolysis capacities through reversal of the F1F0-ATP synthase. STZ-diabetic cardiac mitochondria also produced more net ROS relative to oxygen flux (ROS/O) in OXPHOS. While ΔΨ did not differ between groups, the time to develop ΔΨ with the onset of OXPHOS was protracted in STZ-diabetic mitochondria. ROS/O is higher in lifelike OXPHOS states, and potential delays in the time to develop ΔΨ may delay ATP synthesis with interbeat fluctuations in ADP concentrations. Whereas diabetic cardiac mitochondria produce less ATP in normoxia, they consume as much ATP in anoxic infarct-like states.
由于约 80%的糖尿病患者死于心力衰竭,因此了解糖尿病心肌病至关重要。线粒体占据哺乳动物心肌细胞体积的 35-40%,并提供心脏 95%的 ATP,而糖尿病心脏的线粒体显示出结构、排列和功能受损。我们预测糖尿病心脏线粒体存在生物能量效率低下的情况;因此,我们通过将氧通量与稳态 ATP 合成、活性氧(ROS)产生和线粒体膜电位(ΔΨ)联系起来,探索了线粒体质子和电子的处理。将链脲佐菌素(STZ,55mg/kg)注射到 Sprague-Dawley 大鼠中以诱导 1 型糖尿病,或注射等量的生理盐水(对照,n=12)并喂养标准大鼠饲料 8 周。通过将高分辨率呼吸计与专用荧光计相结合,我们跟踪了镁绿(ATP 合成)、Amplex UltraRed(ROS 产生)和 safranin-O(ΔΨ)。与对照大鼠相比,STZ 糖尿病心脏的质量特异性呼吸在氧化磷酸化(OXPHOS)状态下受到抑制。STZ 糖尿病心脏的稳态 ATP 合成能力几乎降低了三分之一,相对于氧通量,这相当于 OXPHOS 效率降低了 12%左右。然而,在缺氧过渡时,STZ 糖尿病和对照心脏组织通过 F1F0-ATP 合酶的逆转表现出相似的 ATP 水解能力。STZ 糖尿病心脏的线粒体在 OXPHOS 中产生的净 ROS 也相对氧通量(ROS/O)更多。虽然两组之间的ΔΨ没有差异,但在 OXPHOS 开始时,STZ 糖尿病线粒体发展ΔΨ的时间延长。在更逼真的 OXPHOS 状态下,ROS/O 更高,而在 ΔΨ 发展时间的潜在延迟可能会导致随着 ADP 浓度的波动导致 ATP 合成延迟。虽然糖尿病心脏的线粒体在常氧条件下产生较少的 ATP,但在缺氧梗死样状态下它们消耗的 ATP 一样多。