Li Juchuan, Dudney Nancy J, Nanda Jagjit, Liang Chengdu
Materials Science and Technology Division and ‡Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.
ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10083-8. doi: 10.1021/am5009419. Epub 2014 Jun 19.
Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SEI) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.
硅(Si)阳极上的电化学降解阻碍了它们在锂离子电池全电池中的成功应用。与石墨阳极的情况不同,由碳酸盐电解质生成的天然固体电解质界面(SEI)膜在硅上不会自钝化,导致电解质持续分解和锂离子损失。在这项工作中,我们旨在通过使用固体电解质材料氮氧化锂磷(Lipon)制造人工SEI膜来解决电化学降解问题,Lipon可传导锂离子并阻挡电子。对于涂覆有50nm或更厚Lipon的硅阳极,在抑制电解质分解方面观察到显著效果,而厚度小于40nm的Lipon效果有限。离子和电子电导率测量表明,当人工SEI是纯离子导体时有效,但当人工SEI是电子 - 离子混合导体时,电解质分解仅得到部分抑制。发现这种导电行为转变的临界厚度为40 - 50nm。这项工作为使用固体电解质材料设计用于高容量锂离子电池电极的人工SEI膜提供了指导。