Suppr超能文献

揭示氮化硅纳米颗粒阳极在增强循环稳定性、倍率性能和机械坚固性方面的优势。

Unveiling the Advantages of Silicon Nitride Nanoparticle Anodes for Enhanced Cyclic Stability, Rate Performance, and Mechanical Robustness.

作者信息

Nemaga Abirdu Woreka, Lai Samson Yuxiu, Nguyen Theresa, Ulvestad Asbjørn, Foss Carl Erik Lie

机构信息

Department of Battery Technology, Institute for Energy Technology (IFE), P.O. Box 40, Kjeller NO-2027, Norway.

出版信息

ACS Omega. 2025 Jan 15;10(3):2608-2615. doi: 10.1021/acsomega.4c07583. eCollection 2025 Jan 28.

Abstract

Silicon nitride, known as a convertible-type silicon-based anode material, has emerged as a promising alternative to pure Si anodes, featuring improved cyclic stability, rate performance, and kinetics. This study reports on the electrochemical properties of silicon nitride nanoparticles as an anode material. It demonstrates that this anode outperforms a pure silicon anode in terms of cyclic stability and kinetics. Silicon nitride undergoes conversion during initial lithiation, forming a matrix phase that facilitates charge carrier transport that enhances performance. As a result, silicon nitride retains 73% of its initial charge capacity, whereas only 55% for pure silicon, after 350 cycles. The in situ-formed ion-conductive matrix promotes Li-ion transport, yielding an improved rate performance. At 1 C rate, silicon nitride achieves 585 mA h g (38% of C/20 capacity) after 85 cycles, surpassing pure silicon's 470 mA h g (22% of C/20 capacity). Electrochemical impedance indicates silicon nitride's faster ionic conductivity and lower resistance compared to pure silicon. Electrochemical dilatometer findings show less electrode thickness increase in silicon nitride (29%) than in pure silicon (60%) during initial lithiation. Silicon nitride demonstrates potential as an attractive anode material for future Li-ion batteries due to improved cyclic stability, superior rate performance, and stable electrode geometry.

摘要

氮化硅作为一种可转换型硅基负极材料,已成为纯硅负极的一种有前景的替代材料,具有改善的循环稳定性、倍率性能和动力学性能。本研究报道了氮化硅纳米颗粒作为负极材料的电化学性能。结果表明,该负极在循环稳定性和动力学方面优于纯硅负极。氮化硅在首次锂化过程中发生转化,形成促进电荷载流子传输的基体相,从而提高性能。因此,经过350次循环后,氮化硅保留了其初始充电容量的73%,而纯硅仅为55%。原位形成的离子导电基体促进锂离子传输,产生改善的倍率性能。在1 C倍率下,氮化硅在85次循环后达到585 mA h g(C/20容量的38%),超过纯硅的470 mA h g(C/20容量的22%)。电化学阻抗表明,与纯硅相比,氮化硅具有更快的离子电导率和更低的电阻。电化学膨胀仪的结果表明,在首次锂化过程中,氮化硅电极厚度的增加(29%)比纯硅(60%)少。由于具有改善的循环稳定性、优异的倍率性能和稳定的电极几何形状,氮化硅展现出作为未来锂离子电池有吸引力的负极材料的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc5/11780554/5f1bd0a5ae41/ao4c07583_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验