Suppr超能文献

直接的渗透溶质-大分子相互作用赋予折叠态以熵稳定性。

Direct osmolyte-macromolecule interactions confer entropic stability to folded states.

作者信息

Rodríguez-Ropero Francisco, van der Vegt Nico F A

机构信息

Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany.

出版信息

J Phys Chem B. 2014 Jul 3;118(26):7327-34. doi: 10.1021/jp504065e. Epub 2014 Jun 24.

Abstract

Protective osmolytes are chemical compounds that shift the protein folding/unfolding equilibrium toward the folded state under osmotic stresses. The most widely considered protection mechanism assumes that osmolytes are depleted from the protein's first solvation shell, leading to entropic stabilization of the folded state. However, recent theoretical and experimental studies suggest that protective osmolytes may directly interact with the macromolecule. As an exemplary and experimentally well-characterized system, we herein discuss poly(N-isopropylacrylamide) (PNiPAM) in water whose folding/unfolding equilibrium shifts toward the folded state in the presence of urea. On the basis of molecular dynamics simulations of this specific system, we propose a new microscopic mechanism that explains how direct osmolyte-macromolecule interactions confer stability to folded states. We show that urea molecules preferentially accumulate in the first solvation shell of PNiPAM driven by attractive van der Waals dispersion forces with the hydrophobic isopropyl groups, leading to the formation of low entropy urea clouds. These clouds provide an entropic driving force for folding, resulting in preferential urea binding to the folded state and a decrease of the lower folding temperature in agreement with experiment. The simulations further indicate that thermodynamic nonideality of the bulk solvent opposes this driving force and may lead to denaturation, as illustrated by simulations of PNiPAM in aqueous solutions with dimethylurea. The proposed mechanism provides a new angle on relations between the properties of protecting and denaturing osmolytes, salting-in or salting-out effects, and solvent nonidealities.

摘要

保护渗透剂是在渗透胁迫下能使蛋白质折叠/去折叠平衡向折叠态移动的化合物。最常被考虑的保护机制假定渗透剂从蛋白质的第一溶剂化层中耗尽,从而导致折叠态的熵稳定。然而,最近的理论和实验研究表明,保护渗透剂可能直接与大分子相互作用。作为一个典型且实验特征明确的体系,我们在此讨论水中的聚(N-异丙基丙烯酰胺)(PNiPAM),其在尿素存在下折叠/去折叠平衡向折叠态移动。基于对这个特定体系的分子动力学模拟,我们提出了一种新的微观机制,该机制解释了渗透剂与大分子之间的直接相互作用是如何赋予折叠态稳定性的。我们表明,尿素分子在与疏水性异丙基的范德华色散力吸引作用驱动下,优先在PNiPAM的第一溶剂化层中积累,导致形成低熵的尿素云。这些云为折叠提供了熵驱动力,导致尿素优先与折叠态结合,并使较低的折叠温度降低,这与实验结果一致。模拟还表明,本体溶剂的热力学非理想性会对抗这种驱动力,并可能导致变性,如在含二甲基脲的水溶液中对PNiPAM的模拟所示。所提出的机制为保护和变性渗透剂的性质、盐溶或盐析效应以及溶剂非理想性之间的关系提供了一个新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验