Department of Biochemistry and Molecular Biology,Victorian Life Sciences Computation Initiative Life Sciences Computation Centre, and.
Department of Biochemistry and Molecular Biology.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):E2524-9. doi: 10.1073/pnas.1403182111. Epub 2014 Jun 9.
The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.
人类神经内分泌酶谷氨酸脱羧酶(GAD)使用吡哆醛 5'-磷酸作为辅助因子催化抑制性神经递质γ-氨基丁酸(GABA)的合成。GAD 存在两种同工型,根据各自的分子量命名为 GAD65 和 GAD67。虽然细胞质中的 GAD67 通常与辅助因子(全酶 GAD67)饱和并持续活跃以产生 GABA 的基础水平,但膜相关的 GAD65 主要以无活性的 apo 形式存在。GAD65 而不是 GAD67 是一种普遍的自身抗原,自身抗体针对 GAD65 在自身免疫(1 型)糖尿病和某些其他自身免疫性疾病患者中高频检测到。GAD65 自身失活成 apo 形式对神经递质水平和自身抗体反应性的调节意义尚不清楚。我们使用计算和实验方法来解析 GAD65 中的全酶→apo 转化的性质及其自身失活的机制。GAD65 的分子动力学模拟揭示了 C 末端结构域、催化环和吡哆醛 5'-磷酸结合域之间的耦合,这种耦合驱动结构重排、二聚体打开和自身失活,与有限的蛋白酶切片段模式一致。与小角度 X 射线散射和荧光光谱数据一起,我们的发现与 apoGAD65 作为构象集合的存在一致。抗体结合动力学表明了一种相互诱导构象变化的机制,暗示了 apoGAD65 的灵活性与其自身抗原性有关。虽然构象多样性可能为受辅助因子控制的神经递质生物合成调节提供了一种机制,但它也可能带来免疫自身耐受不足的代价,这有利于 GAD65 自身抗体的产生。