Riikonen S, Parkkinen P, Halonen L, Gerber R B
Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, FI-00014, Helsinki, Finland.
J Phys Chem A. 2014 Jul 10;118(27):5029-37. doi: 10.1021/jp505627n. Epub 2014 Jun 30.
The ice quasi-liquid layer (QLL) forms on ice surfaces below the bulk ice melting temperature. It is abundant in the atmosphere, and its importance for atmospheric chemistry is recognized. In the present work, we have studied the microscopic mechanisms of acid ionization on the QLL using ab initio molecular dynamics. The model system QLL is established by nanosecond time scale simulations with empirical force fields, while the reactivity of the QLL is studied using ab initio molecular dynamics. Our ab initio simulations reveal that QLL is reactive, exhibiting stable crystalline point defects, which contribute to efficient acid solvation, ionization, and proton transfer. We study in detail deuterated hydrogen iodide (DI) and nitric acid (DNO3). Ionization in both cases benefits from the abundance of weakly bonded hydrogen-bond single-acceptor double-donor water molecular species available on the QLL in high relative concentration. Picosecond time scale ionization is demonstrated for both molecular species. Our results suggest efficient reactivity of acid ionization and proton transfer at temperature ranges appropriate for the upper troposphere and lower stratosphere.
冰准液态层(QLL)在低于整块冰熔化温度的冰表面形成。它在大气中大量存在,其对大气化学的重要性已得到认可。在本研究中,我们使用从头算分子动力学研究了QLL上酸电离的微观机制。通过使用经验力场的纳秒时间尺度模拟建立了模型系统QLL,同时使用从头算分子动力学研究了QLL的反应活性。我们的从头算模拟表明,QLL具有反应活性,表现出稳定的晶体点缺陷,这有助于酸的有效溶剂化、电离和质子转移。我们详细研究了氘代碘化氢(DI)和硝酸(DNO3)。在这两种情况下,电离都受益于QLL上相对高浓度存在的大量弱键合氢键单受体双供体水分子物种。两种分子物种都证明了皮秒时间尺度的电离。我们的结果表明,在适合对流层上部和平流层下部的温度范围内,酸电离和质子转移具有高效的反应活性。