Li Ke, Schneider Marc
Huazhong University of Science and Technology, Pharmacy Department, Union Hospital, Tongji Medical College, Wuhan 430022, China.
Philipps University Marburg, Pharmaceutics and Biopharmacy, Ketzerbach 63, D-35037 Marburg, Germany.
J Biomed Opt. 2014;19(10):101505. doi: 10.1117/1.JBO.19.10.101505.
With ever-increasing applications of nanoscale materials in the biomedical field, the impact of nanoparticle size on cellular uptake efficiency, dynamics, and mechanism has attracted numerous interests but still leaves many open questions. A combined "multiphoton imaging-UV/Vis spectroscopic analysis" method was applied for the first time for quantitative visualization and evaluation of the cellular uptake process of different-sized (15-, 30-, 50-, and 80-nm) gold nanoparticles (AuNPs). Quantitative analysis of the size effect on cellular uptake behavior of AuNPs from a stack of three-dimensional multiphoton laser scanning microscopy images is obtained. The technique allows for differentiating AuNPs present in external and internal subcellular components, giving detailed information for elucidating cellular uptake dynamics without particle labeling. The data show that the internalization extent of AuNPs is highly dependent on particles' sizes and incubation time. Due to sedimentation, 50- and 80-nm AuNPs are taken up to a greater extent than 15- and 30-nm particles after exposure for 24 h. However, the smaller particles' uptake velocity is significantly faster in the first 10 h, indicating a disparity in uptake kinetics for different-sized AuNPs. The finding from this study will improve our understanding of the cellular uptake mechanisms of different-sized nanoparticles and has great implications in developing AuNP-based drug carriers with various sizes for different purposes.
随着纳米级材料在生物医学领域的应用日益增加,纳米颗粒大小对细胞摄取效率、动力学和机制的影响已引起众多关注,但仍存在许多悬而未决的问题。首次应用“多光子成像-紫外/可见光谱分析”相结合的方法,对不同尺寸(15、30、50和80纳米)的金纳米颗粒(AuNPs)的细胞摄取过程进行定量可视化和评估。通过三维多光子激光扫描显微镜图像堆栈,对AuNPs细胞摄取行为的尺寸效应进行了定量分析。该技术能够区分存在于细胞外和细胞内亚组分中的AuNPs,在无需对颗粒进行标记的情况下,为阐明细胞摄取动力学提供详细信息。数据表明,AuNPs的内化程度高度依赖于颗粒大小和孵育时间。由于沉降作用,在暴露24小时后,50纳米和80纳米的AuNPs比15纳米和30纳米的颗粒摄取程度更高。然而,较小颗粒在前10小时的摄取速度明显更快,这表明不同尺寸AuNPs的摄取动力学存在差异。本研究的发现将增进我们对不同尺寸纳米颗粒细胞摄取机制的理解,并对开发用于不同目的的各种尺寸的基于AuNP的药物载体具有重要意义。