Rutgers M, van der Gulden H M, van Dam K
Laboratory of Biochemistry and Biotechnology Centre, University of Amsterdam, The Netherlands.
Biochim Biophys Acta. 1989 Feb 28;973(2):302-7. doi: 10.1016/s0005-2728(89)80436-0.
In order to determine the thermodynamic efficiency of bacterial growth, Pseudomonas oxalaticus OX1 was grown in carbon-limited continuous cultures. 11 different carbon sources, ranging from oxalate (most oxidised component) to ethanol (most reduced component), were used as limiting substrate in these experiments. From the experimental yield values (expressed as C-mol dry weight produced per C-mol carbon substrate consumed) the thermodynamic efficiencies were calculated. On substrates more reduced than biomass (such as ethanol and glycerol) the thermodynamic efficiency of growth of P. oxalaticus was negative but it reached a maximum of 23 +/- 3% with substrates with a degree of reduction of 3 (citrate) and lower. The actual concentrations of the components involved were incorporated into the calculations but this affected the overall thermodynamic efficiency only to a small extent. This result strengthens the conclusion of Westerhoff et al. (Westerhoff, H.V., Hellingwerf, K.J. and Van Dam, K. (1983) Proc. Natl. Acad. Sci. 80, 305-309) that bacteria have been optimised towards a theoretical thermodynamic efficiency of 24%, corresponding with maximisation of growth rate at optimal efficiency, with highly oxidised substrates.
为了确定细菌生长的热力学效率,草酸假单胞菌OX1在碳限制连续培养物中生长。在这些实验中,使用了11种不同的碳源,从草酸盐(氧化程度最高的成分)到乙醇(还原程度最高的成分)作为限制底物。根据实验产率值(以每消耗的C摩尔碳底物产生的C摩尔干重表示)计算热力学效率。在比生物质还原程度更高的底物上(如乙醇和甘油),草酸假单胞菌的生长热力学效率为负,但在还原程度为3的底物(柠檬酸盐)及更低的底物上,其生长热力学效率最高可达23±3%。计算中纳入了所涉及成分的实际浓度,但这对整体热力学效率的影响很小。这一结果强化了韦斯特霍夫等人(韦斯特霍夫,H.V.,赫林韦夫,K.J.和范达姆,K.(1983年)《美国国家科学院院刊》80,305 - 309)的结论,即细菌已朝着24%的理论热力学效率进行了优化,这与在最佳效率下生长速率最大化以及使用高度氧化的底物相对应。