Suppr超能文献

从热力学角度看遗传指令、生物学定律和病变状态。

Thermodynamic perspectives on genetic instructions, the laws of biology and diseased states.

机构信息

School of Environmental Sciences, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.

出版信息

C R Biol. 2011 Jan;334(1):1-5. doi: 10.1016/j.crvi.2010.11.008. Epub 2010 Dec 30.

Abstract

This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases.

摘要

本文从广义的角度探讨了熵及其与进化、遗传指令以及我们如何看待疾病的一些关系。生命有机体通过功能性遗传指令(FGI),通过细胞通讯途径,通过维持各种半稳定、有序的结构(低熵)来生长和繁殖。生命有机体与其周围环境系统之间远非处于平衡状态,周围环境系统趋向于增加无序(增加熵)。生物体通过摆脱高熵(高无序)来维持其细胞结构,以便有足够的时间进行繁殖,并且产生的后代能够达到生殖年龄。这个时间间隔因物种而异。例如,细菌不需要有性父母;分裂的细胞几乎与前一代细胞相同,并且在适当的条件下可以毫不延迟地开始新的细胞周期。相比之下,人类婴儿需要数年的照顾才能繁殖。尽管生物体周围的环境在不断变化,降低了根据热力学第二定律的有序性,但生物体仍能维持秩序。这些事件实际上是相互作用的,因为生物体通过增加局部熵来创建有序的生物结构。从疾病的角度来看,病毒和其他疾病因子会干扰细胞的正常功能。生存的压力可能导致生物体产生抵抗病毒、其他病原体、破坏性化学物质和物理因子(如辐射)攻击的机制。然而,当攻击成功时,生物体可能会受到损害,直到细胞、组织、器官或整个生物体不再具有功能,熵增加。

相似文献

1
Thermodynamic perspectives on genetic instructions, the laws of biology and diseased states.
C R Biol. 2011 Jan;334(1):1-5. doi: 10.1016/j.crvi.2010.11.008. Epub 2010 Dec 30.
2
The critical roles of information and nonequilibrium thermodynamics in evolution of living systems.
Bull Math Biol. 2013 Apr;75(4):589-601. doi: 10.1007/s11538-013-9821-x. Epub 2013 Feb 28.
3
Generalizations about bacteriology: thermodynamic, open systems, genetic instructions, and evolution.
Antonie Van Leeuwenhoek. 2010 May;97(4):313-8. doi: 10.1007/s10482-010-9419-3. Epub 2010 Feb 6.
4
Towards a definition of life.
Perspect Biol Med. 2010 Summer;53(3):330-40. doi: 10.1353/pbm.0.0167.
5
[Informative predation: Towards a new species concept].
C R Biol. 2018 Apr;341(4):209-218. doi: 10.1016/j.crvi.2018.02.004. Epub 2018 Mar 30.
6
Entropy, Ecology and Evolution: Toward a Unified Philosophy of Biology.
Entropy (Basel). 2023 Feb 23;25(3):405. doi: 10.3390/e25030405.
7
Thermodynamics and evolution.
J Theor Biol. 2000 Sep 7;206(1):1-16. doi: 10.1006/jtbi.2000.2106.
8
Directionality principles in thermodynamics and evolution.
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3491-8. doi: 10.1073/pnas.94.8.3491.
9
Triadic conceptual structure of the maximum entropy approach to evolution.
Biosystems. 2011 Mar;103(3):315-30. doi: 10.1016/j.biosystems.2010.10.014. Epub 2010 Nov 3.
10
Entropy Perspectives of Molecular and Evolutionary Biology.
Int J Mol Sci. 2022 Apr 7;23(8):4098. doi: 10.3390/ijms23084098.

引用本文的文献

1
Entropy Perspectives of Molecular and Evolutionary Biology.
Int J Mol Sci. 2022 Apr 7;23(8):4098. doi: 10.3390/ijms23084098.
2
Transposon-mediated directed mutation in bacteria and eukaryotes.
Front Biosci (Landmark Ed). 2017 Mar 1;22(9):1458-1468. doi: 10.2741/4553.
3
Control of Transposon-Mediated Directed Mutation by the Escherichia coli Phosphoenolpyruvate:Sugar Phosphotransferase System.
J Mol Microbiol Biotechnol. 2015;25(2-3):226-33. doi: 10.1159/000375375. Epub 2015 Jul 9.

本文引用的文献

1
The energetics of genome complexity.
Nature. 2010 Oct 21;467(7318):929-34. doi: 10.1038/nature09486.
2
Suitable microscopic entropy for the origin of microbial life: microbiological methods are challenges.
J Microbiol Methods. 2010 Dec;83(3):341-4. doi: 10.1016/j.mimet.2010.05.012. Epub 2010 Jun 1.
3
Perspective: researching the transition from non-living to the first microorganisms: methods and experiments are major challenges.
J Microbiol Methods. 2010 Jun;81(3):259-63. doi: 10.1016/j.mimet.2010.03.015. Epub 2010 Mar 28.
4
The riddle of "life," a biologist's critical view.
Naturwissenschaften. 2009 Jan;96(1):1-23. doi: 10.1007/s00114-008-0422-8. Epub 2008 Sep 2.
5
Evolution of cell division in bacteria.
Theory Biosci. 2004 Jun;123(1):3-15. doi: 10.1016/j.thbio.2004.03.001.
6
Measuring the functional sequence complexity of proteins.
Theor Biol Med Model. 2007 Dec 6;4:47. doi: 10.1186/1742-4682-4-47.
7
Cancer as an evolutionary and ecological process.
Nat Rev Cancer. 2006 Dec;6(12):924-35. doi: 10.1038/nrc2013. Epub 2006 Nov 16.
8
Information theory in living systems, methods, applications, and challenges.
Bull Math Biol. 2007 Feb;69(2):635-57. doi: 10.1007/s11538-006-9141-5. Epub 2006 Nov 3.
9
The Big Bang, Superstring Theory and the origin of life on the Earth.
Theory Biosci. 2006 Mar;124(3-4):403-12. doi: 10.1016/j.thbio.2005.04.002. Epub 2005 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验