Traytak Sergey D
Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071 Orléans, France; Le STUDIUM (Loire Valley Institute for Advanced Studies), 3D av. de la Recherche Scientifique, 45071 Orléans, France; and Semenov Institute of Chemical Physics RAS, 4 Kosygina St., 117977 Moscow, Russia.
J Chem Phys. 2014 Jun 14;140(22):224102. doi: 10.1063/1.4874112.
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
我们研究的对象是一个各向异性三维方程,它描述了点状粒子在细长的不可渗透旋转管中的扩散情况,该管的横截面随纵向坐标平滑变化。我们采用奇异摄动法来寻找局部粒子浓度的严格渐近表达式,将其表示为特征横向和纵向扩散弛豫时间之比的展开式。相应的首项近似是著名的菲克 - 雅各布斯近似的推广。这一结果使我们能够确定菲克 - 雅各布斯近似有效的时间和空间尺度条件。我们还建立了我们问题的解与低克努森数气体动力学理论的内外展开法之间的显著类比。借助这一类比,我们阐明了所得结果的物理和数学意义。