Kalai Safaa, Bensoussan Maurice, Dantigny Philippe
Laboratoire des Procédés Alimentaires et Microbiologiques, UMR PAM A 02.102, Agro-Sup Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France.
Laboratoire des Procédés Alimentaires et Microbiologiques, UMR PAM A 02.102, Agro-Sup Dijon, Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France.
Food Microbiol. 2014 Sep;42:149-53. doi: 10.1016/j.fm.2014.03.016. Epub 2014 Apr 2.
In the environment, fungal conidia are subject to transient conditions. In particular, temperature is varying according to day/night periods. All predictive models for germination assume that fungal spores can adapt instantaneously to changes of temperature. The only study that supports this assumption (Gougouli and Koutsoumanis, 2012, Modelling germination of fungal spores at constant and fluctuating temperature conditions. International Journal of Food Microbiology, 152: 153-161) was carried out on Penicillium expansum and Aspergillus niger conidia that, in most cases, already produced germ tubes. In contrast, the present study focuses on temperature shifts applied during the first stages of germination (i.e., before the apparition of the germ tubes). Firstly, germination times were determined in steady state conditions at 10, 15, 20 and 25 °C. Secondly, temperature shifts (e.g., up-shifts and down-shifts) were applied at 1/4, 1/2, and 3/4 of germination times, with 5, 10 and 15 °C magnitudes. Experiments were carried out in triplicate on Penicillium chrysogenum conidia on Potato Dextrose Agar medium according to a full factorial design. Statistical analysis of the results clearly demonstrated that the assumption of instantaneous adaptation of the conidia should be rejected. Temperature shifts during germination led to an induced lag time or an extended germination time as compared to the experiments conducted ay steady state. The induced lag time was maximized when the amplitude of the shift was equal to 10 °C. Interaction between the instant and the direction of the shift was highlighted. A negative lag time was observed for a 15 °C down-shift applied at 1/4 of the germination time. This result suggested that at optimal temperature the rate of germination decreased with time, and that the variation of this rate with time depended on temperature.
在环境中,真菌分生孢子会受到短暂的条件影响。特别是,温度会根据昼夜周期而变化。所有关于萌发的预测模型都假定真菌孢子能够瞬间适应温度变化。唯一支持这一假设的研究(Gougouli和Koutsoumanis,2012年,《在恒定和波动温度条件下真菌孢子萌发的建模》。《国际食品微生物学杂志》,152:153 - 161)是针对扩展青霉和黑曲霉分生孢子进行的,在大多数情况下,这些分生孢子已经产生了芽管。相比之下,本研究关注的是在萌发的第一阶段(即在芽管出现之前)施加的温度变化。首先,在10、15、20和25°C的稳态条件下测定萌发时间。其次,在萌发时间的1/4、1/2和3/4时施加温度变化(例如,升温变化和降温变化),幅度为5、10和15°C。根据全因子设计,在马铃薯葡萄糖琼脂培养基上对产黄青霉分生孢子进行了三次重复实验。结果的统计分析清楚地表明,分生孢子瞬间适应的假设应该被否定。与在稳态下进行的实验相比,萌发期间的温度变化导致了诱导延迟时间或延长的萌发时间。当变化幅度等于10°C时,诱导延迟时间最大。突出显示了变化瞬间与变化方向之间的相互作用。在萌发时间的1/4时施加15°C的降温变化时观察到负延迟时间。这一结果表明,在最佳温度下,萌发速率随时间下降,并且该速率随时间的变化取决于温度。