Suppr超能文献

一种使用局部敏感哈希的社交标签系统增量社区检测方法。

An incremental community detection method for social tagging systems using locality-sensitive hashing.

作者信息

Wu Zhenyu, Zou Ming

机构信息

School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.

School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.

出版信息

Neural Netw. 2014 Oct;58:14-28. doi: 10.1016/j.neunet.2014.05.019. Epub 2014 Jun 2.

Abstract

An increasing number of users interact, collaborate, and share information through social networks. Unprecedented growth in social networks is generating a significant amount of unstructured social data. From such data, distilling communities where users have common interests and tracking variations of users' interests over time are important research tracks in fields such as opinion mining, trend prediction, and personalized services. However, these tasks are extremely difficult considering the highly dynamic characteristics of the data. Existing community detection methods are time consuming, making it difficult to process data in real time. In this paper, dynamic unstructured data is modeled as a stream. Tag assignments stream clustering (TASC), an incremental scalable community detection method, is proposed based on locality-sensitive hashing. Both tags and latent interactions among users are incorporated in the method. In our experiments, the social dynamic behaviors of users are first analyzed. The proposed TASC method is then compared with state-of-the-art clustering methods such as StreamKmeans and incremental k-clique; results indicate that TASC can detect communities more efficiently and effectively.

摘要

越来越多的用户通过社交网络进行互动、协作和共享信息。社交网络前所未有的增长正在产生大量非结构化的社交数据。从这些数据中,提炼出用户具有共同兴趣的社区,并跟踪用户兴趣随时间的变化,是意见挖掘、趋势预测和个性化服务等领域的重要研究方向。然而,考虑到数据的高度动态特性,这些任务极具挑战性。现有的社区检测方法耗时较长,难以实时处理数据。在本文中,动态非结构化数据被建模为一个流。基于局部敏感哈希提出了标签分配流聚类(TASC),这是一种增量可扩展的社区检测方法。该方法同时纳入了标签和用户之间的潜在交互。在我们的实验中,首先分析了用户的社交动态行为。然后将所提出的TASC方法与诸如StreamKmeans和增量k团等最先进的聚类方法进行比较;结果表明,TASC能够更高效、有效地检测社区。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验