Suppr超能文献

在笔记本电脑上对完整社交网络进行实时社区检测。

Real-time community detection in full social networks on a laptop.

作者信息

Chamberlain Benjamin Paul, Levy-Kramer Josh, Humby Clive, Deisenroth Marc Peter

机构信息

Department of Computing, Imperial College London, London, United Kingdom.

Starcount Insights, London, United Kingdom.

出版信息

PLoS One. 2018 Jan 17;13(1):e0188702. doi: 10.1371/journal.pone.0188702. eCollection 2018.

Abstract

For a broad range of research and practical applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As global social networks (e.g., Facebook and Twitter) are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present an approach for analyzing full social networks on a standard laptop, allowing for interactive exploration of the communities in the locality of a set of user specified query vertices. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates the edge weights between vertices in a derived graph. Local communities can be constructed by selecting vertices that are connected to the query vertices with high edge weights in the derived graph. This compression is robust to noise and allows for interactive queries of local communities in real-time, which we define to be less than the average human reaction time of 0.25s. We achieve single-machine real-time performance by compressing the neighborhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e., communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetize their data, helping them to continue to provide free services that are valued by billions of people globally.

摘要

对于广泛的研究和实际应用而言,了解社会中关键参与者的忠诚关系、社群和结构非常重要。提取此类信息的一个有前景的方向是利用数字社交网络(社交图谱)中丰富的关系数据。由于全球社交网络(如Facebook和Twitter)规模巨大,大多数方法为此目的使用分布式计算系统。分布式图处理需要解决许多困难的工程问题,这使得一些研究人员着眼于更快且更易于维护的单机解决方案。在本文中,我们提出了一种在标准笔记本电脑上分析完整社交网络的方法,允许对一组用户指定查询顶点附近的社群进行交互式探索。关键思想是大量用户的聚合行为可以被压缩成一种数据结构,该结构封装了派生图中顶点之间的边权重。通过选择在派生图中与查询顶点以高边权重相连的顶点,可以构建局部社群。这种压缩对噪声具有鲁棒性,并允许对局部社群进行实时交互式查询,我们将实时定义为小于人类平均反应时间0.25秒。我们通过使用最小哈希签名压缩每个顶点的邻域来实现单机实时性能,并通过局部敏感哈希促进快速查询。这些技术将查询时间从使用处理完整图的工业台式机所需的数小时减少到标准笔记本电脑上的毫秒级。我们的方法允许在笔记本电脑上实时探索大型图的强关联区域(即社群)。它已被部署到社交网络分析师正在积极使用的软件中,并为媒体所有者提供了另一种将其数据货币化的渠道,帮助他们继续提供全球数十亿人所珍视的免费服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69db/5771570/c1224befcbbe/pone.0188702.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验