Yamada Ayako, Lee Sungyon, Bassereau Patricia, Baroud Charles N
Institut Curie, Centre de Recherche; CNRS, UMR168; Université Pierre et Marie Curie; Labex CelTisPhyBio and Paris Sciences et Lettres, F-75248 Paris Cedex 05, France.
Soft Matter. 2014 Aug 28;10(32):5878-85. doi: 10.1039/c4sm00065j.
We describe the trapping and release of giant unilamellar vesicles (GUVs) in a thin and wide microfluidic channel, as they cross indentations etched in the channel ceiling. This trapping results from the reduction of the membrane elastic energy, which is stored in the GUV as it squeezes to enter into the thin channel. We demonstrate that GUVs whose diameter is slightly larger than the channel height can be trapped and that they can be untrapped by flowing the outer fluid beyond a critical velocity. GUVs smaller than the channel height flow undisturbed while those much larger cannot squeeze into the thin regions. Within the range that allows trapping, larger GUVs are anchored more strongly than smaller GUVs. The ability to trap vesicles provides optical access to the GUVs for extended periods of time; this allows the observation of recirculation flows on the surface of the GUVs, in the forward direction near the mid-plane of the channel and in the reverse direction elsewhere. We also obtain the shape of GUVs under different flow conditions through confocal microscopy. This geometric information is used to derive a mechanical model of the force balance that equates the viscous effects from the outer flow with the elastic effects based on the variation of the membrane stretching energy. This model yields good agreement with the experimental data when values of the stretching moduli are taken from the scientific literature. This microfluidic approach provides a new way of storing a large number of GUVs at specific locations, with or without the presence of an outer flow. As such, it constitutes a high-throughput alternative to micropipette manipulation of individual GUVs for chemical or biological applications.
我们描述了巨型单层囊泡(GUVs)在一个薄而宽的微流控通道中的捕获和释放过程,当它们穿过蚀刻在通道顶部的凹痕时就会发生这种情况。这种捕获是由于膜弹性能量的减少导致的,当GUV挤压进入薄通道时,弹性能量就会存储在GUV中。我们证明,直径略大于通道高度的GUV可以被捕获,并且当外部流体流速超过临界速度时,它们可以被释放。小于通道高度的GUV可以不受干扰地流动,而比通道高度大得多的GUV则无法挤入狭窄区域。在允许捕获的范围内,较大的GUV比较小的GUV锚定得更牢固。捕获囊泡的能力使得能够在较长时间内对GUV进行光学观察;这使得能够观察到GUV表面的再循环流动,在通道中平面附近向前流动,在其他地方向后流动。我们还通过共聚焦显微镜获得了不同流动条件下GUV的形状。这些几何信息被用于推导一个力平衡的力学模型,该模型根据膜拉伸能量的变化,将外部流动的粘性效应与弹性效应等同起来。当从科学文献中获取拉伸模量的值时,该模型与实验数据吻合良好。这种微流控方法提供了一种在特定位置存储大量GUV的新方法,无论是否存在外部流动。因此,它构成了一种高通量的替代方法,可用于化学或生物应用中对单个GUV进行微量移液器操作。