Waechtler Brooke E, Jayasankar Rajan, Morin Emma P, Robinson Douglas N
Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, Maryland, USA.
Cytoskeleton (Hoboken). 2024 Dec;81(12):843-863. doi: 10.1002/cm.21855. Epub 2024 Mar 23.
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
细胞改变形状的能力是许多细胞过程的核心特征,包括胞质分裂、运动性、迁移和组织形成。细胞在细胞膜下方构建一个收缩蛋白网络以形成皮质,这些成分的重组直接导致细胞形状的变化。模仿这些细胞形状变化以助力合成细胞创建的需求一直在增加。因此,基于膜的重组实验蓬勃发展,加深了我们对细胞在这些过程中使用的最小成分的理解。尽管生化方法增进了我们对肌动蛋白、肌球蛋白II和肌动蛋白相关蛋白的理解,但使用基于膜的重组系统进一步扩展了我们对肌动蛋白结构和功能的理解,因为可以分析膜 - 皮质相互作用。在这篇综述中,我们重点介绍基于膜的重组技术的最新进展。我们研究了关于重现不同肌动蛋白结构和功能所需的最小成分的当前发现,以及它们与皮质对细胞力学性质的影响之间的关系。我们还探讨了计算模型与湿实验室实验的协同处理如何增进我们对这些性质的理解。最后,我们强调基于膜的重组测定所固有的益处和挑战,从对系统的精确控制优势到将这些发现整合到复杂细胞环境中的困难。