Suppr超能文献

重构肌动蛋白皮层的益处与挑战。

Benefits and challenges of reconstituting the actin cortex.

作者信息

Waechtler Brooke E, Jayasankar Rajan, Morin Emma P, Robinson Douglas N

机构信息

Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, Maryland, USA.

出版信息

Cytoskeleton (Hoboken). 2024 Dec;81(12):843-863. doi: 10.1002/cm.21855. Epub 2024 Mar 23.

Abstract

The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.

摘要

细胞改变形状的能力是许多细胞过程的核心特征,包括胞质分裂、运动性、迁移和组织形成。细胞在细胞膜下方构建一个收缩蛋白网络以形成皮质,这些成分的重组直接导致细胞形状的变化。模仿这些细胞形状变化以助力合成细胞创建的需求一直在增加。因此,基于膜的重组实验蓬勃发展,加深了我们对细胞在这些过程中使用的最小成分的理解。尽管生化方法增进了我们对肌动蛋白、肌球蛋白II和肌动蛋白相关蛋白的理解,但使用基于膜的重组系统进一步扩展了我们对肌动蛋白结构和功能的理解,因为可以分析膜 - 皮质相互作用。在这篇综述中,我们重点介绍基于膜的重组技术的最新进展。我们研究了关于重现不同肌动蛋白结构和功能所需的最小成分的当前发现,以及它们与皮质对细胞力学性质的影响之间的关系。我们还探讨了计算模型与湿实验室实验的协同处理如何增进我们对这些性质的理解。最后,我们强调基于膜的重组测定所固有的益处和挑战,从对系统的精确控制优势到将这些发现整合到复杂细胞环境中的困难。

相似文献

1
Benefits and challenges of reconstituting the actin cortex.重构肌动蛋白皮层的益处与挑战。
Cytoskeleton (Hoboken). 2024 Dec;81(12):843-863. doi: 10.1002/cm.21855. Epub 2024 Mar 23.
6
The design of MACs (minimal actin cortices).最小肌动蛋白皮层(MACs)的设计
Cytoskeleton (Hoboken). 2013 Nov;70(11):706-17. doi: 10.1002/cm.21136. Epub 2013 Oct 4.
9
The actin cortex at a glance.肌动蛋白皮质一览。
J Cell Sci. 2018 Jul 19;131(14):jcs186254. doi: 10.1242/jcs.186254.

本文引用的文献

4
Filopodia In Vitro and In Vivo.丝状伪足的体外与体内研究
Annu Rev Cell Dev Biol. 2023 Oct 16;39:307-329. doi: 10.1146/annurev-cellbio-020223-025210. Epub 2023 Jul 5.
5
Nonmuscle myosin IIB is a driver of cellular reprogramming.非肌肉肌球蛋白 IIB 是细胞重编程的驱动因素。
Mol Biol Cell. 2023 Jun 1;34(7):ar71. doi: 10.1091/mbc.E21-08-0386. Epub 2023 Apr 19.
9
Differential regulation of GUV mechanics via actin network architectures.通过肌动蛋白网络结构对 GUV 力学的差异调节。
Biophys J. 2023 Jun 6;122(11):2068-2081. doi: 10.1016/j.bpj.2022.11.026. Epub 2022 Nov 17.
10
Particle-based model of mechanosensory contractility kit assembly.基于粒子的机械敏感性收缩性试剂盒组装模型。
Biophys J. 2022 Dec 6;121(23):4600-4614. doi: 10.1016/j.bpj.2022.10.031. Epub 2022 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验