Department of Biology, Stanford University, Stanford, CA 94305, USA.
Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
Mol Cell. 2014 Aug 7;55(3):422-435. doi: 10.1016/j.molcel.2014.05.012. Epub 2014 Jun 12.
To define a functional network for calcineurin, the conserved Ca(2+)/calmodulin-regulated phosphatase, we systematically identified its substrates in S. cerevisiae using phosphoproteomics and bioinformatics, followed by copurification and dephosphorylation assays. This study establishes new calcineurin functions and reveals mechanisms that shape calcineurin network evolution. Analyses of closely related yeasts show that many proteins were recently recruited to the network by acquiring a calcineurin-recognition motif. Calcineurin substrates in yeast and mammals are distinct due to network rewiring but, surprisingly, are phosphorylated by similar kinases. We postulate that corecognition of conserved substrate features, including phosphorylation and docking motifs, preserves calcineurin-kinase opposition during evolution. One example we document is a composite docking site that confers substrate recognition by both calcineurin and MAPK. We propose that conserved kinase-phosphatase pairs define the architecture of signaling networks and allow other connections between kinases and phosphatases to develop that establish common regulatory motifs in signaling networks.
为了定义钙调神经磷酸酶(一种保守的 Ca2+/钙调蛋白调节磷酸酶)的功能网络,我们使用磷酸蛋白质组学和生物信息学系统地鉴定了酿酒酵母中的其底物,然后进行共纯化和去磷酸化检测。本研究确立了钙调神经磷酸酶的新功能,并揭示了塑造钙调神经磷酸酶网络进化的机制。对亲缘关系密切的酵母的分析表明,许多蛋白质最近通过获得钙调神经磷酸酶识别基序而被招募到网络中。由于网络重布线,酵母和哺乳动物中的钙调神经磷酸酶底物不同,但令人惊讶的是,它们被相似的激酶磷酸化。我们推测,保守的底物特征(包括磷酸化和对接基序)的共识别在进化过程中保留了钙调神经磷酸酶-激酶的对立。我们记录的一个例子是一个复合对接位点,它通过钙调神经磷酸酶和 MAPK 赋予底物识别。我们提出,保守的激酶-磷酸酶对定义信号网络的结构,并允许激酶和磷酸酶之间建立其他连接,从而在信号网络中建立共同的调节基序。