Yamulla Robert J, Kane Eric G, Moody Alexandra E, Politi Kristin A, Lock Nicole E, Foley Andrew V A, Roberts David M
Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604.
Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604
Genetics. 2014 Aug;197(4):1285-302. doi: 10.1534/genetics.114.166496. Epub 2014 Jun 14.
The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein "destruction complex" that targets the proto-oncogene β-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity β-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all β-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that β-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all β-catenin-binding sites (including the 15Rs) and find that a direct β-catenin/APC interaction is also not essential for β-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby β-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock β-catenin in the destruction complex to increase the efficiency of β-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of β-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of β-catenin likely accounts for this difference.
Wnt信号通路是一条保守的信号转导通路,它对正常发育和成年期的体内平衡有重要作用,但在癌症等人类疾病中也会出现调控异常。肿瘤抑制因子腺瘤性息肉病基因(APC)是Wnt信号的关键负调控因子,在超过80%的结直肠癌中失活。APC参与一种多蛋白“降解复合物”,该复合物将原癌基因β-连环蛋白靶向进行泛素介导的蛋白水解;然而,APC在降解复合物中的机制作用仍不清楚。最近提出了几种APC功能模型,其中许多强调了APC上高亲和力β-连环蛋白结合位点[20个氨基酸重复序列(20Rs)]磷酸化的重要性。在这里,我们通过生成一个缺乏所有β-连环蛋白结合20Rs的果蝇APC2突变体,并在人结肠癌细胞系和果蝇胚胎中进行功能研究来测试这些模型。我们的结果与当前模型不一致,因为我们发现β-连环蛋白与APC的20Rs结合对于降解复合物的活性不是必需的。此外,我们生成了一个缺乏所有β-连环蛋白结合位点(包括15Rs)的APC2突变体,发现直接的β-连环蛋白/APC相互作用对于β-连环蛋白的降解也不是必需的,尽管它在某些发育环境中会提高降解复合物的效率。总体而言,我们的研究结果支持这样一种模型,即APC上的β-连环蛋白结合位点本身并不提供关键的机制功能,而是将β-连环蛋白停靠在降解复合物中以提高β-连环蛋白降解的效率。此外,在表达一些APC2突变转基因的果蝇胚胎中,我们观察到β-连环蛋白降解和Wg/Wnt信号输出的分离,并表明β-连环蛋白的细胞质滞留可能是造成这种差异的原因。