Suppr超能文献

一种基于小波的用于识别振荡性事件相关电位成分的算法。

A wavelet based algorithm for the identification of oscillatory event-related potential components.

作者信息

Aniyan Arun Kumar, Philip Ninan Sajeeth, Samar Vincent J, Desjardins James A, Segalowitz Sidney J

机构信息

St. Thomas College, Kozhencherry 689641, Kerala, India.

Rochester Institute of Technology, 52 Lomb Memorial Drive, Rochester, NY 14623, USA.

出版信息

J Neurosci Methods. 2014 Aug 15;233:63-72. doi: 10.1016/j.jneumeth.2014.06.004. Epub 2014 Jun 12.

Abstract

Event related potentials (ERPs) are very feeble alterations in the ongoing electroencephalogram (EEG) and their detection is a challenging problem. Based on the unique time-based parameters derived from wavelet coefficients and the asymmetry property of wavelets a novel algorithm to separate ERP components in single-trial EEG data is described. Though illustrated as a specific application to N170 ERP detection, the algorithm is a generalized approach that can be easily adapted to isolate different kinds of ERP components. The algorithm detected the N170 ERP component with a high level of accuracy. We demonstrate that the asymmetry method is more accurate than the matching wavelet algorithm and t-CWT method by 48.67 and 8.03 percent, respectively. This paper provides an off-line demonstration of the algorithm and considers issues related to the extension of the algorithm to real-time applications.

摘要

事件相关电位(ERPs)是正在进行的脑电图(EEG)中非常微弱的变化,其检测是一个具有挑战性的问题。基于从小波系数导出的独特的基于时间的参数以及小波的不对称特性,描述了一种在单次试验EEG数据中分离ERP成分的新算法。尽管该算法被说明为N170 ERP检测的特定应用,但它是一种通用方法,可以很容易地适用于分离不同类型的ERP成分。该算法以高准确度检测到了N170 ERP成分。我们证明,不对称方法分别比匹配小波算法和t-CWT方法准确48.67%和8.03%。本文提供了该算法的离线演示,并考虑了将该算法扩展到实时应用相关的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验