Suppr超能文献

供体的重要性:富勒烯分子间排列对高效有机光伏的影响。

Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics.

机构信息

Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.

出版信息

J Am Chem Soc. 2014 Jul 9;136(27):9608-18. doi: 10.1021/ja502985g. Epub 2014 Jun 26.

Abstract

The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) (13)C{(1)H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems.

摘要

有机光伏 (OPV) 材料体系的性能被假设强烈依赖于给体:富勒烯界面处的分子间排列。对一些用于聚合物:富勒烯光伏器件中最有效的聚合物的综述,结合对其中使用相同共轭主链但具有不同烷基取代基的报道聚合物供体材料的分析,支持了这一假设。具体来说,文献表明,性能更高的给体-受体型聚合物通常具有受体部分,其在空间上可与富勒烯衍生物相互作用,而相应的供体部分往往具有支化的烷基取代基,其空间位阻阻碍与富勒烯的相互作用。为了进一步探索最有益的聚合物:富勒烯排列涉及富勒烯与受体部分的对接的想法,合成了一系列苯并[1,2-b:4,5-b']二噻吩-噻吩[3,4-c]吡咯-4,6-二酮聚合物 (PBDTTPD 衍生物),并在各种具有聚合物不同聚集态的光伏器件类型中进行了测试。与我们的假设一致,具有更易接近的受体部分和更具空间位阻的供体部分的 PBDTTPD 衍生物在体异质结、双层和低聚合物浓度光伏器件中表现出最高性能,其中富勒烯衍生物用作电子受体材料。此外,电荷转移态的外量子效率测量和固态二维 (2D)(13)C{(1)H}异核相关 (HETCOR) NMR 分析支持对于性能最高的 PBDTTPD 衍生物,存在特定的聚合物:富勒烯排列,其中富勒烯更接近聚合物的受体部分。这项工作表明,聚合物:富勒烯排列和由此产生的分子间相互作用可能是决定 OPV 材料体系性能的关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验