Royakkers Jeroen, Yang Hanbo, Gillett Alexander J, Eisner Flurin, Ghosh Pratyush, Congrave Daniel G, Azzouzi Mohammed, Andaji-Garmaroudi Zahra, Leventis Anastasia, Rao Akshay, Frost Jarvist Moore, Nelson Jenny, Bronstein Hugo
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
Department of Physics, Imperial College London, London, UK.
Nat Chem. 2024 Sep;16(9):1453-1461. doi: 10.1038/s41557-024-01578-x. Epub 2024 Aug 20.
Control of the molecular configuration at the interface of an organic heterojunction is key to the development of efficient optoelectronic devices. Due to the difficulty in characterizing these buried and (probably) disordered heterointerfaces, the interfacial structure in most systems remains a mystery. Here we demonstrate a synthetic strategy to design and control model interfaces, enabling their detailed study in isolation from the bulk material. This is achieved by the synthesis of a polymer in which a non-fullerene acceptor moiety is covalently bonded to a donor polymer backbone using dual alkyl chain links, constraining the acceptor and donor units in a through space co-facial arrangement. The constrained geometry of the acceptor relative to the electron-rich and -poor moieties in the polymer backbone can be tuned to control the kinetics of charge separation and the energy of the resultant charge-transfer state giving insight into factors that govern charge generation at organic heterojunctions.
控制有机异质结界面处的分子构型是高效光电器件发展的关键。由于难以表征这些埋藏且(可能)无序的异质界面,大多数系统中的界面结构仍是个谜。在此,我们展示了一种合成策略,用于设计和控制模型界面,从而能够在与本体材料隔离的情况下对其进行详细研究。这是通过合成一种聚合物来实现的,其中非富勒烯受体部分通过双烷基链连接共价键合到供体聚合物主链上,将受体和供体单元限制在一个通过空间的共面排列中。受体相对于聚合物主链中富电子和贫电子部分的受限几何结构可以进行调节,以控制电荷分离的动力学以及所得电荷转移态的能量,从而深入了解在有机异质结处控制电荷产生的因素。