Department of Chemistry and §Department of Chemical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2014 Jul 2;136(26):9464-70. doi: 10.1021/ja5042385. Epub 2014 Jun 16.
Molecular defects critically impact the properties of materials. Here we introduce a paradigm called "isotopic labeling disassembly spectrometry" (ILDaS) that facilitates unprecedented precise experimental correlations between elastically inactive network defects (dangling chains and primary loops) and network formation kinetics and precursor structure. ILDaS is inspired by classical crossover experiments, which are often used to interrogate whether a reaction mechanism proceeds via an inter- or intramolecular pathway. We show that if networks are designed from labeled bifunctional monomers that transfer their labels to multifunctional junctions upon network formation, then the extent of junction labeling correlates directly with the number of dangling chains and cyclic imperfections within the network. We demonstrate two complementary ILDaS approaches that enable defect measurements with short analysis times, low cost, and synthetic versatility applicable to a broad range of network materials including polydisperse polymer precursors. The results will spur new experimental and theoretical investigations into the interplay between polymer network structure and properties.
分子缺陷会严重影响材料的性能。在这里,我们引入了一种称为“同位素标记拆卸光谱法(ILDaS)”的范例,该方法可以在弹性非活性网络缺陷(悬垂链和初级环)与网络形成动力学和前体结构之间实现前所未有的精确实验相关性。ILDaS 的灵感来自经典的交叉实验,这些实验通常用于探究反应机制是否通过分子内或分子间途径进行。我们表明,如果网络是由标记的双官能单体设计的,这些单体在网络形成时将其标记转移到多功能连接点,那么连接点的标记程度与网络内的悬垂链和环状缺陷的数量直接相关。我们展示了两种互补的 ILDaS 方法,这些方法可以在短的分析时间内进行缺陷测量,具有低成本和合成多功能性,适用于包括多分散聚合物前体在内的广泛的网络材料。这些结果将激发新的实验和理论研究,探讨聚合物网络结构和性能之间的相互作用。