Suppr超能文献

探索异源基因组空间,逐步构建对有毒化学物质的复杂多组分耐受性。

Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals.

作者信息

Zingaro Kyle A, Nicolaou Sergios A, Yuan Yongbo, Papoutsakis Eleftherios Terry

机构信息

Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware , Newark, Delaware 19711, United States.

出版信息

ACS Synth Biol. 2014 Jul 18;3(7):476-86. doi: 10.1021/sb400156v. Epub 2014 Feb 19.

Abstract

Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses both improved cell viability and growth under chemical stress. Building upon the success of our recently reported semisynthetic stress response system expressed off plasmid pHSP (Heat Shock Protein), we probed the genomic space of the solvent tolerant Lactobacillus plantarum to identify genetic determinants that impart solvent tolerance in combination with pHSP. Using two targeted enrichments, one for superior viability and one for better growth under ethanol stress, we identified several beneficial heterologous DNA determinants that act synergistically with pHSP. In separate strains, a 209% improvement in survival and an 83% improvement in growth over previously engineered strains based on pHSP were thus generated. We then developed a composite phenotype of improved growth and survival by combining the identified L. plantarum genetic fragments. This demonstrates the concept for a sequential, iterative assembly strategy for building multigenic traits by exploring the synergistic effects of genetic determinants from a much broader genomic space. The best performing strain produced a 3.7-fold improved survival under 8% ethanol stress, as well as a 32% increase in growth under 4% ethanol. This strain also shows significantly improved tolerance to n-butanol. Improved solvent production is rarely examined in tolerance engineering studies. Here, we show that our system significantly improves ethanol productivity in a Melle-Boinot-like fermentation process.

摘要

现代生物加工依赖于优良的细胞特性,其中许多特性源于未知基因和基因相互作用。对有毒化学物质的耐受性是一种在工业上非常重要的复杂特性,它经常限制生产大宗化学品和生物燃料的经济可行性。化学耐受性包括在化学胁迫下提高细胞活力和生长。基于我们最近报道的在质粒pHSP(热休克蛋白)上表达的半合成应激反应系统的成功,我们探索了耐溶剂植物乳杆菌的基因组空间,以确定与pHSP结合赋予溶剂耐受性的遗传决定因素。通过两次靶向富集,一次用于提高活力,一次用于在乙醇胁迫下更好地生长,我们鉴定了几个与pHSP协同作用的有益异源DNA决定因素。在单独的菌株中,与基于pHSP的先前工程菌株相比,存活率提高了209%,生长率提高了83%。然后,我们通过组合鉴定出的植物乳杆菌遗传片段,开发了一种生长和存活能力提高的复合表型。这证明了一种通过探索更广泛基因组空间中遗传决定因素的协同效应来构建多基因性状的顺序迭代组装策略的概念。表现最佳的菌株在8%乙醇胁迫下的存活率提高了3.7倍,在4%乙醇下的生长率提高了32%。该菌株对正丁醇的耐受性也显著提高。在耐受性工程研究中很少研究提高溶剂产量的问题。在这里,我们表明我们的系统在类似Melle - Boinot的发酵过程中显著提高了乙醇生产率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验