Suppr超能文献

拓扑自组织和预测学习都支持大脑中的动作链和词汇链。

Topological self-organization and prediction learning support both action and lexical chains in the brain.

机构信息

Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy.

出版信息

Top Cogn Sci. 2014 Jul;6(3):476-91. doi: 10.1111/tops.12094. Epub 2014 Jun 17.

Abstract

A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall.

摘要

越来越多的认知心理学和神经科学证据表明,大脑中的感觉运动和语言系统之间存在着深刻的相互联系。基于最近关于额顶网络解剖功能组织的神经生理学发现,我们提出了一个计算模型,表明语言处理可能已经重新使用或共同发展了与运动回路相似的组织原则、功能和学习机制。该模型结合了赫布拓扑自组织和预测学习的原理。在运动或语言单元的序列上进行训练,网络会发展出独立的神经元链,由专门的节点组成,这些节点只对特定于上下文的刺激进行编码。此外,对相同刺激或同一类刺激作出反应的神经元往往会聚集在一起,形成类似于大脑皮层中观察到的拓扑连接区域。模拟结果支持一个统一的解释框架,将神经生理学的运动数据与关于词汇习得、获取和回忆的既定行为证据相协调。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验