Physik-Institut, Universität Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
ACS Nano. 2014 Jul 22;8(7):7423-31. doi: 10.1021/nn502645w. Epub 2014 Jun 23.
The exposure of hexagonal boron nitride single layers to low energy ions leads to the formation of vacancy defects that are mobile at elevated temperatures. For the case of h-BN on rhodium, a superhoneycomb surface with 3 nm lattice constant (nanomesh), a concerted self-assembly of these defects is observed, where the "can-opener" effect leads to the cut-out of 2 nm "lids" and stable voids in the h-BN layer. These clean-cut voids repel each other, which enables the formation of arrays with a nearest neighbor distance down to about 8 nm. The density of voids depends on the Ar ion dose, and can reach 10(12) cm(-2). If the structures are annealed above 1000 K, the voids disappear and pristine h-BN nanomesh with larger holes is recovered. The results are obtained by scanning tunneling microscopy and density functional theory calculations.
将六方氮化硼单层暴露于低能离子会导致空位缺陷的形成,这些缺陷在高温下是可移动的。对于在铑上的 h-BN,具有 3nm 晶格常数(纳米网)的超笼状表面,这些缺陷会协同自组装,其中“开罐器”效应会导致 2nm“盖子”的切割和 h-BN 层中的稳定空位。这些整齐的空位相互排斥,从而使最近邻距离降至约 8nm 的阵列得以形成。空位的密度取决于 Ar 离子剂量,最高可达 10(12)cm(-2)。如果结构在 1000K 以上退火,空位将消失,并且会恢复具有更大孔的原始 h-BN 纳米网。这些结果是通过扫描隧道显微镜和密度泛函理论计算获得的。