Physik-Institut and ‡Physikalisch-Chemisches Institut, Universität Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
ACS Nano. 2014 Jan 28;8(1):1014-21. doi: 10.1021/nn405907a. Epub 2013 Dec 19.
Hyperthermal atoms may be implanted beneath single layers of graphene or hexagonal boron nitride (h-BN) on a substrate. For the case of h-BN on rhodium, which is a corrugated honeycomb superstructure with a periodicity of 3.2 nm, Ar atoms are implanted at distinct interstitial sites within the supercell, where the h-BN is weakly bound to the substrate. These peculiar structures are reminiscent of "nanotents" with an ultimately thin "rainfly". Here we explore the implantation length (i.e., the distance the atoms move before they come to rest as interstitial defects) and the thermal stability of these atomic agglomerates above room temperature. The results are obtained by variable-temperature scanning tunneling microscopy and density functional theory calculations.
超热原子可以被植入衬底上的单层石墨烯或六方氮化硼(h-BN)之下。对于 h-BN 在铑上的情况,铑是具有 3.2nm 周期性的波纹蜂巢超结构,氩原子被植入超胞内的不同间隙位置,其中 h-BN 与衬底结合较弱。这些特殊结构让人联想到带有最终超薄“rainfly”的“nanotents”。在这里,我们研究了这些原子聚集体在室温以上的植入长度(即原子在静止为间隙缺陷之前移动的距离)和热稳定性。结果通过变温扫描隧道显微镜和密度泛函理论计算获得。