Cai Yi, Li Qing, Xie Haoran, Min Huaqin
School of Software Engineering, South China University of Technology, Guangzhou, China.
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
Neural Netw. 2014 Oct;58:98-110. doi: 10.1016/j.neunet.2014.05.017. Epub 2014 Jun 4.
With the increase in resource-sharing websites such as YouTube and Flickr, many shared resources have arisen on the Web. Personalized searches have become more important and challenging since users demand higher retrieval quality. To achieve this goal, personalized searches need to take users' personalized profiles and information needs into consideration. Collaborative tagging (also known as folksonomy) systems allow users to annotate resources with their own tags, which provides a simple but powerful way for organizing, retrieving and sharing different types of social resources. In this article, we examine the limitations of previous tag-based personalized searches. To handle these limitations, we propose a new method to model user profiles and resource profiles in collaborative tagging systems. We use a normalized term frequency to indicate the preference degree of a user on a tag. A novel search method using such profiles of users and resources is proposed to facilitate the desired personalization in resource searches. In our framework, instead of the keyword matching or similarity measurement used in previous works, the relevance measurement between a resource and a user query (termed the query relevance) is treated as a fuzzy satisfaction problem of a user's query requirements. We implement a prototype system called the Folksonomy-based Multimedia Retrieval System (FMRS). Experiments using the FMRS data set and the MovieLens data set show that our proposed method outperforms baseline methods.
随着YouTube和Flickr等资源共享网站的增加,网络上出现了许多共享资源。由于用户对检索质量的要求越来越高,个性化搜索变得更加重要且具有挑战性。为了实现这一目标,个性化搜索需要考虑用户的个性化配置文件和信息需求。协作标签(也称为大众分类法)系统允许用户用自己的标签注释资源,这为组织、检索和共享不同类型的社会资源提供了一种简单但强大的方式。在本文中,我们研究了以前基于标签的个性化搜索的局限性。为了处理这些局限性,我们提出了一种在协作标签系统中对用户配置文件和资源配置文件进行建模的新方法。我们使用归一化词频来表示用户对标签的偏好程度。提出了一种使用这种用户和资源配置文件的新颖搜索方法,以促进资源搜索中所需的个性化。在我们的框架中,与以前工作中使用的关键词匹配或相似度测量不同,资源与用户查询之间的相关性测量(称为查询相关性)被视为用户查询需求的模糊满意度问题。我们实现了一个名为基于大众分类法的多媒体检索系统(FMRS)的原型系统。使用FMRS数据集和MovieLens数据集进行的实验表明,我们提出的方法优于基线方法。