IEEE Trans Image Process. 2017 Aug;26(8):3734-3747. doi: 10.1109/TIP.2017.2699623. Epub 2017 Apr 28.
Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.
社交媒体分享网站允许用户使用免费标签注释图像,这极大地促进了网络图像检索的发展。基于标签的图像搜索是在社交网络中查找用户共享图像的一种重要方法。然而,如何使排名最高的结果具有相关性和多样性是具有挑战性的。在本文中,我们提出了一种基于主题多样性的标签图像检索方法,考虑到提高主题覆盖率的性能。首先,我们基于每个标签之间的相似性构建一个标签图。然后,采用社区检测方法挖掘每个标签的主题社区。之后,引入了跨社区和社区内排序,以获得最终的检索结果。在跨社区排序过程中,我们采用自适应随机游走模型基于每个主题社区的多信息对社区进行排序。此外,我们还构建了一个图像的倒排索引结构,以加速搜索过程。在 Flickr 数据集和 NUS-Wide 数据集上的实验结果表明了所提出方法的有效性。