Suppr超能文献

对Sox1-GFP小鼠胚胎干细胞进行分选可增强在无因子单层分化时神经元特性的获得。

Sorting of Sox1-GFP Mouse Embryonic Stem Cells Enhances Neuronal Identity Acquisition upon Factor-Free Monolayer Differentiation.

作者信息

Incitti Tania, Messina Andrea, Bozzi Yuri, Casarosa Simona

机构信息

Centre for Integrative Biology, University of Trento , Trento, Italy .

Centre for Integrative Biology, University of Trento , Trento, Italy . ; Neuroscience Institute , National Research Council (CNR), Pisa, Italy .

出版信息

Biores Open Access. 2014 Jun 1;3(3):127-35. doi: 10.1089/biores.2014.0009.

Abstract

Embryonic stem cells (ESCs) can give rise to all the differentiated cell types of the organism, including neurons. However, the efficiency and specificity of neural differentiation protocols still needs to be improved in order to plan their use in cell replacement therapies. In this study, we modified a monolayer differentiation protocol by selecting green fluorescent protein (GFP) positive neural precursors with fluorescence-activated cell sorting (FACS). The enhancement of neural differentiation was obtained by positively selecting for neural precursors, while specific neuronal subtypes spontaneously differentiated without additional cues; a comparable but delayed behavior was also observed in the GFP negative population, indicating that sorting settings per se eliminated nonneural and undifferentiated ESCs. This highly reproducible approach could be applied as a strategy to enhance neuronal differentiation and could be the first step toward the selection of pure populations of neurons, to be generated by the administration of specific factors in high throughput screening assays.

摘要

胚胎干细胞(ESCs)能够分化形成生物体的所有分化细胞类型,包括神经元。然而,为了将其应用于细胞替代疗法,神经分化方案的效率和特异性仍有待提高。在本研究中,我们通过荧光激活细胞分选(FACS)筛选绿色荧光蛋白(GFP)阳性神经前体细胞,对单层分化方案进行了改进。通过正向选择神经前体细胞可增强神经分化,而特定的神经元亚型在无额外信号的情况下自发分化;在GFP阴性群体中也观察到了类似但延迟的现象,这表明分选设置本身可去除非神经和未分化的ESCs。这种高度可重复的方法可作为一种增强神经元分化的策略,并且可能是在高通量筛选试验中通过给予特定因子来生成纯神经元群体的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a590/4048977/29d2469afc74/fig-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验