Selopal Gurpreet Singh, Memarian Nafiseh, Milan Riccardo, Concina Isabella, Sberveglieri Giorgio, Vomiero Alberto
SENSOR Lab, Department of Information Engineering, University of Brescia , Via Valotti 9, 25133 Brescia, Italy.
ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11236-44. doi: 10.1021/am501360a. Epub 2014 Jun 30.
The effect of a ZnO compact blocking layer (BL) in dye-sensitized solar cells (DSSCs) based on ZnO photoanodes is investigated. BL is generated through spray deposition onto fluorine-doped tin oxide (FTO) conducting glass before the deposition of a ZnO active layer. The functional properties of dye-sensitized solar cells (DSSCs) are then investigated as a function of the thickness of the BL for two different kinds of ZnO active layer, i.e., hierarchically self-assembled nanoparticles and microcubes composed of closely packed ZnO sheets. Presence of BL leads to the improvement of photoconversion efficiency (PCE), by physically insulating the electrolyte and the FTO. This effect increases at increasing BL thickness up to around 800 nm, while thicker BL results in reduced cell performance. Remarkable increase in Jsc is recorded, which doubles as compared to cells without blocking layer, leading to PCE as high as 5.6% in the best cell under one sun irradiation (AM 1.5 G, 100 mW cm(-2)). Electrochemical impedance spectroscopy (EIS) elucidates the mechanism boosting the functional features of the cells with BL, which relies with enhanced chemical capacitance together with an almost unchanged recombination resistance, which are reflected in an increased electron lifetime. The results foresee a straightforward way to significantly improve the performance of ZnO-based DSSCs.
研究了基于氧化锌光阳极的染料敏化太阳能电池(DSSC)中氧化锌致密阻挡层(BL)的作用。在沉积氧化锌活性层之前,通过喷雾沉积在氟掺杂氧化锡(FTO)导电玻璃上生成阻挡层。然后,针对两种不同类型的氧化锌活性层,即分层自组装纳米颗粒和由紧密堆积的氧化锌片组成的微立方体,研究了染料敏化太阳能电池(DSSC)的功能特性与阻挡层厚度的关系。阻挡层的存在通过使电解质和FTO物理绝缘,提高了光电转换效率(PCE)。随着阻挡层厚度增加到约800nm,这种效果增强,而更厚的阻挡层会导致电池性能下降。记录到短路电流密度(Jsc)显著增加,与没有阻挡层的电池相比增加了一倍,在一个太阳光照(AM 1.5 G,100 mW cm(-2))下,最佳电池的光电转换效率高达5.6%。电化学阻抗谱(EIS)阐明了提高带有阻挡层电池功能特性的机制,这依赖于增强的化学电容以及几乎不变的复合电阻,这反映在电子寿命的增加上。结果预示了一种显著提高基于氧化锌的染料敏化太阳能电池性能的直接方法。