Department of Chemistry: Metalorganics and Inorganic Materials, Sekr. C2, Technische Universität Berlin , Strasse des 17. Juni 135, 10623 Berlin, Germany.
J Am Chem Soc. 2014 Jul 9;136(27):9732-42. doi: 10.1021/ja504448v. Epub 2014 Jun 26.
The reaction of AlBr3 with 1 molar equiv of the chelating bis(N-heterocyclic carbene) ligand bis(N-Dipp-imidazole-2-ylidene)methylene (bisNHC, 1) affords (bisNHC)AlBr2Br(-) (2) as an ion pair in high yield, representing the first example of a bisNHC-Al(III) complex. Debromination of the latter with 1 molar equiv of K2Fe(CO)4 in tetrahydrofuran (THF) furnishes smoothly, in a redox reaction, the (bisNHC)(Br)Al[Fe(CO)4] complex 3, in which the Al(I) center is stabilized by the Fe(CO)4 moiety through Al(I):→Fe(0) coordination. Strikingly, the Br/H ligand exchange reactions of 3 using potassium hydride as a hydride source in THF or tetrahydropyran (THP) do not yield the anticipated hydridoaluminum(I) complex (bisNHC)Al(H)[Fe(CO)4] (4a) but instead lead to (bisNHC)Al(2-cyclo-OC4H7)[Fe(CO)4] (4) and (bisNHC)Al(2-cyclo-OC5H9)[Fe(CO)4] (5), respectively. The latter are generated via C-H bond activation at the α-carbon positions of THF and THP, respectively, in good yields with concomitant elimination of dihydrogen. This is the first example whereby a low-valent main-group hydrido complex facilitates metalation of sp(3) C-H bonds. Interestingly, when K[BHR3] (R = Et, sBu) is employed as a hydride source to react with 3 in THF, the reaction affords (bisNHC)Al(OnBu)[Fe(CO)4] (6) as the sole product through C-O bond activation and ring opening of THF. The mechanisms for these novel C-H and C-O bond activations mediated by the elusive hydridoaluminum(I) complex 4a were elucidated by density functional theory (DFT) calculations. In contrast, the analogous hydridogallium(I) complex (bisNHC)Ga(H)[Fe(CO)4] (9) can be obtained directly in high yield by the reaction of the (bisNHC)Ga(Cl)[Fe(CO)4] precursor 8 with 1 molar equiv of K[BHR3] (R = Et, sBu) in THF at room temperature. The isolation of 9 and its inertness toward cyclic ethers might be attributed to the higher electronegativity of gallium versus aluminum. The stronger Ga(I)-H bond, in turn, hampers α-C-H metalation or C-O bond cleavage in cyclic ethers, the latter of which is supported by DFT calculations.
三溴化铝与 1 摩尔当量的螯合双(N-杂环卡宾)配体双(N-二异丙基-咪唑-2-亚基)亚甲基(双 NHC,1)反应,以高产率得到[(双 NHC)AlBr2](+)Br(-)(2)作为离子对,这代表了第一个双 NHC-Al(III)配合物的例子。后者用 1 摩尔当量的 K2Fe(CO)4 在四氢呋喃(THF)中脱溴,在氧化还原反应中顺利地得到(双 NHC)(Br)Al[Fe(CO)4]配合物 3,其中 Al(I)中心通过 Al(I):→Fe(0)配位被 Fe(CO)4 部分稳定。引人注目的是,3 与氢化钾在 THF 或四氢吡喃(THP)中的 Br/H 配体交换反应没有得到预期的氢代铝(I)配合物(双 NHC)Al(H)[Fe(CO)4](4a),而是分别得到(双 NHC)Al(2-环-OC4H7)[Fe(CO)4](4)和(双 NHC)Al(2-环-OC5H9)[Fe(CO)4](5)。后者分别通过 THF 和 THP 的α-碳位置的 C-H 键活化,以高产率生成,并伴随着氢气的消除。这是第一个低价主族氢化物配合物促进 sp(3)C-H 键金属化的例子。有趣的是,当 K[BHR3](R=Et,sBu)用作氢源与 3 在 THF 中反应时,通过 C-O 键活化和 THF 的开环,反应仅得到(双 NHC)Al(OnBu)[Fe(CO)4](6)作为唯一产物。通过密度泛函理论(DFT)计算,阐明了由难以捉摸的氢代铝(I)配合物 4a 介导的这些新型 C-H 和 C-O 键活化的机制。相比之下,类似的氢化镓(I)配合物(双 NHC)Ga(H)[Fe(CO)4](9)可以直接通过(双 NHC)Ga(Cl)[Fe(CO)4]前体 8 与 1 摩尔当量的 K[BHR3](R=Et,sBu)在室温下在 THF 中反应得到高产率。9 的分离及其对环状醚的惰性可能归因于镓相对于铝的更高电负性。更强的 Ga(I)-H 键反过来阻碍了α-C-H 金属化或环状醚中的 C-O 键断裂,后者得到 DFT 计算的支持。