Suppr超能文献

热带蝙蝠调查中的物种抽样不足:对新兴生物多样性模式的影响。

Species undersampling in tropical bat surveys: effects on emerging biodiversity patterns.

作者信息

Meyer Christoph F J, Aguiar Ludmilla M S, Aguirre Luis F, Baumgarten Julio, Clarke Frank M, Cosson Jean-François, Estrada Villegas Sergio, Fahr Jakob, Faria Deborah, Furey Neil, Henry Mickaël, Jenkins Richard K B, Kunz Thomas H, Cristina MacSwiney González M, Moya Isabel, Pons Jean-Marc, Racey Paul A, Rex Katja, Sampaio Erica M, Stoner Kathryn E, Voigt Christian C, von Staden Dietrich, Weise Christa D, Kalko Elisabeth K V

机构信息

Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.

Institute of Experimental Ecology, University of Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany.

出版信息

J Anim Ecol. 2015 Jan;84(1):113-23. doi: 10.1111/1365-2656.12261. Epub 2014 Jul 22.

Abstract

Undersampling is commonplace in biodiversity surveys of species-rich tropical assemblages in which rare taxa abound, with possible repercussions for our ability to implement surveys and monitoring programmes in a cost-effective way. We investigated the consequences of information loss due to species undersampling (missing subsets of species from the full species pool) in tropical bat surveys for the emerging patterns of species richness (SR) and compositional variation across sites. For 27 bat assemblage data sets from across the tropics, we used correlations between original data sets and subsets with different numbers of species deleted either at random, or according to their rarity in the assemblage, to assess to what extent patterns in SR and composition in data subsets are congruent with those in the initial data set. We then examined to what degree high sample representativeness (r ≥ 0·8) was influenced by biogeographic region, sampling method, sampling effort or structural assemblage characteristics. For SR, correlations between random subsets and original data sets were strong (r ≥ 0·8) with moderate (ca. 20%) species loss. Bias associated with information loss was greater for species composition; on average ca. 90% of species in random subsets had to be retained to adequately capture among-site variation. For nonrandom subsets, removing only the rarest species (on average c. 10% of the full data set) yielded strong correlations (r > 0·95) for both SR and composition. Eliminating greater proportions of rare species resulted in weaker correlations and large variation in the magnitude of observed correlations among data sets. Species subsets that comprised ca. 85% of the original set can be considered reliable surrogates, capable of adequately revealing patterns of SR and temporal or spatial turnover in many tropical bat assemblages. Our analyses thus demonstrate the potential as well as limitations for reducing survey effort and streamlining sampling protocols, and consequently for increasing the cost-effectiveness in tropical bat surveys or monitoring programmes. The dependence of the performance of species subsets on structural assemblage characteristics (total assemblage abundance, proportion of rare species), however, underscores the importance of adaptive monitoring schemes and of establishing surrogate performance on a site by site basis based on pilot surveys.

摘要

在物种丰富的热带生物群落的生物多样性调查中,欠抽样现象很常见,其中稀有分类群大量存在,这可能会对我们以具有成本效益的方式实施调查和监测计划的能力产生影响。我们研究了热带蝙蝠调查中由于物种欠抽样(从完整物种库中遗漏物种子集)导致的信息损失对物种丰富度(SR)的新出现模式以及各地点间组成变化的影响。对于来自热带地区的27个蝙蝠群落数据集,我们使用原始数据集与随机删除或根据其在群落中的稀有程度删除不同数量物种的子集之间的相关性,来评估数据子集中SR模式和组成与初始数据集的模式在多大程度上一致。然后,我们研究了高样本代表性(r≥0·8)在多大程度上受到生物地理区域、采样方法、采样努力或结构群落特征的影响。对于SR,随机子集与原始数据集之间的相关性在物种损失适度(约20%)时很强(r≥0·8)。与信息损失相关的偏差在物种组成方面更大;平均而言,随机子集中约90%的物种必须保留才能充分捕捉各地点间的变化。对于非随机子集,仅去除最稀有的物种(平均约占完整数据集的10%)会使SR和组成的相关性都很强(r>0·95)。去除更大比例的稀有物种会导致相关性减弱,且数据集中观察到的相关性大小存在很大差异。包含约85%原始集的物种子集可被视为可靠的替代物,能够充分揭示许多热带蝙蝠群落中的SR模式以及时间或空间周转率。因此,我们的分析证明了减少调查工作量和简化采样方案的潜力和局限性,从而提高热带蝙蝠调查或监测计划的成本效益。然而,物种子集性能对结构群落特征(总群落丰度、稀有物种比例)的依赖性强调了适应性监测方案以及基于试点调查逐点建立替代物性能的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验